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A B S T R A C T

Trajectory-User Linking (TUL) aims to link anonymous trajectories to their owners, which is considered an
essential task in discovering human mobility patterns. Although existing TUL studies have shown promising
results, they still have specific defects in the perception of spatio-temporal properties of trajectories, which
manifested in the following three problems: missing context of the original trajectory, ignorance of spatial
information, and high computational complexity. To address those issues, we revisit the characteristics of
the trajectory and propose a novel model called TULMGAT (TUL via Multi-Scale Graph Attention Network)
based on masked self-attention graph neural networks. Specifically, TULMGAT consists of four components:
construction of check-in oriented graphs, node embedding, trajectory embedding, and trajectory user linking.
Sufficient experiments on two publicly available datasets have shown that TULMGAT is the state-of-the-art
model in task TUL compared to the baselines with an improvement of about 8% in accuracy and only a
quarter of the fastest baseline in runtime. Furthermore, model validity experiments have verified the role of
each module.
1. Introduction

Benefiting from the proliferation of GPS-based devices and the rapid
development of mobile applications in recent years, large amounts of
trajectories, which are converted from check-in records, have been
recorded. Those trajectories contain spatio-temporal information about
human individual mobility patterns. It has led to the emergence of
location-based social networking(LBSN) technology, which is regarded
as an essential bridge between the virtual web and the real world. As
check-in records containing spatio-temporal features is one of the most
common information generated by personal daily routines, LBSN has
many practical applications, such as functional region discovery [1],
trajectory anomaly detection [2], and so on. Trajectories generated by
user movement are special spatio-temporal data converted from check-
in records in LBSN after initial characterization such as discretization
and embedding [3].

Trajectory-user linking [4] is a critical task in trajectory analysis,
receiving much attention in recent studies. It aims to link anony-
mous trajectories to the users who generated them by learning from
known user trajectories. Due to increased population and refined ur-
ban functional areas, the transportation environment of modern cities
tends to be complicated [5]. Applications such as social networks and
navigation tend to use trajectories to optimize user-related services.
However, for the protection of personal information [6], third-party
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service providers often cannot get trajectories containing users’ labels
due to privacy agreements, so trajectory user linking has a practical ap-
plication in the field of intelligent transportation and is a fundamental
task for analyzing human mobility and individual movement patterns.

There are two types of solutions for trajectory user linking: tra-
ditional trajectory similarity-based studies and deep learning-based
models. Traditional methods often use statistical machine learning to
analyze spatial properties of trajectory points, such as Deep Bayesian
Networks (DBN), Hidden Markov Models (HMM), and Longest Common
Sub-Sequence (LCSS) [7]. These methods are considered feasible for
trajectory user linking. However, the available research at TUL verifies
that the traditional schemes struggle with linear nonseparability and
noise in large trajectory datasets, which are the prevalent difficulties
faced by the similarity computation of pairwise points-matching [7].

For those reasons, deep learning solutions have been proposed
and are gradually dominating the topic. Trajectory user linking is a
spatio-temporal data problem formally defined by [4] in 2017, and
TULER was proposed to establish the research foundation for the
subsequent research of TUL based on AI-based methods [8]. Inspired
by Word2vec [9] in NLP, TULER treats POIs [10] containing spatial
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Fig. 1. The structure of trajectory.

information as words to embed POIs from the two-dimensional geo-
graphic space into high-dimensional space and continues to mine tem-
poral dependencies and spatial properties in trajectories by RNN-based
models.

Following TULER, TULVAE [11], STULIG [12] and others utilize
semi-supervised generative networks [13] to assist in classification
tasks. TULAR [14] addresses the issue of information loss or feature
redundancy in previous models due to the sampling of a fixed number
of POIs by introducing the Trajectory Semantic Vector (TSV) module
to embed trajectories of arbitrary length. However, these works treat
trajectories as a variant of text or a type of time series, as shown in
Fig. 1(a), rather than as spatio-temporal data. GNNTUL [15] is the
first model to consider a trajectory as a graph, similar to Fig. 1(b),
and explores the spatial features of location information in trajecto-
ries, TULRN [16] is a variant of GNNTUL by improving the neighbor
sampling scheme of GraphSAGE [17].

Despite the significant contributions of the works mentioned above,
the following problems limit their performances: (1). Missing context
of the original trajectory; (2). Ignorance of spatial information;
(3). High computational complexity. Next, we will elaborate on these
common issues in existing work in conjunction with Table 1:

(1). Missing context of the original trajectory: This issue arises
due to the limitations of the preprocessing strategy or the pre-defined
modeling strategy. In the models we discuss except TULAR [14], other
work faces the problem of missing original trajectory contexts. Since
users actively report check-in records, the number of check-ins over
time is random and the intervals between check-ins vary, leading to
the inconsistent trajectories lengths.

On one hand, RNN-based methods like TULER [4] treat trajecto-
ries as sequences shown in Fig. 1, but cannot handle variable-length
trajectories. Thus, they need to randomly sample to discard or repeat
some check-ins, or directly truncate long trajectories and pad short
trajectories to obtain a fixed-length trajectory for processing, which
explains why some check-ins of the long trajectory in Fig. 1(a) have
been ignored.

On the other hand, existing GNN-based methods, such as GNNTUL,
not only intercept a fixed number of nodes in the trajectory to construct
the graph, but also apply GraphSAGE to sample a fixed number of
neighboring nodes for aggregation. Even though TULRN proposes to
utilize Renyi entropy to compute nodes weights to improve sampling,
it still inevitably loses the original trajectory information. In summary,
RNN-based models are limited by fixed-length inputs, and GraphSAGE-
based models tend to be limited by aggregation algorithms, resulting in
the inability to handle trajectories of arbitrary length at the model level,
and their sampling results in missing context for the original trajectories
at the data level.
2 
Table 1
Comparison of TULMGAT with others methods in motivation.

Model Context of
the trajectory

Spatial
information

Computational
complexity

TULER Incomplete None Medium
TULVAE Incomplete None High
TULAR Complete None Medium
STULIG Incomplete None High
GNNTUL Incomplete True Medium
TULRN Incomplete True Medium
The desired model
(TULMGAT)

Complete True Low

(2). Ignorance of spatial information: As previously mentioned,
most TUL methods, except GNNTUL and TULRN, treat trajectories
as text variants or sequence data in Fig. 1(a), and cascade location
embeddings to mine human mobility patterns, which ignores the spatial
information of trajectories in Fig. 1(b), resulting in ignoring the con-
nections in geospatial space, with the deeper semantics of geographic
location.

(3). High computational complexity: TUL methods like TUL-
VAE [11] and STULIG [12] introduce generative tasks to mine potential
trajectory distributions, resulting in unaffordable training costs due
to the larger number of parameters in trajectory generation tasks
compared to classification tasks. Additionally, RNN-based methods, due
to tandem location embedding, and GNNTUL [15] and TULRN [16],
which aggregate neighboring nodes in a cascade manner, lack advan-
tages in parallel computation. A detailed analysis of computational
complexity is presented in Table 6 of Section 5.2.3.

Among the three problems mentioned above, the missing context of
the original trajectory and the ignorance of spatial information result in
incomplete trajectory information, reducing the accuracy of trajectory-
user linking. High time complexity affects training speed and quick
deployment.

We believe that existing work suffers from these problems because
they do not treat trajectories as complete and ideal spatio-temporal
data as shown in Fig. 1(b), and we propose a trajectory user-linking
model that retains all original trajectory information while efficiently
mining spatio-temporal features. Therefore, the model needs to satisfy
the following requirements compared to previous works:

(1). Context: Allows the information in the original trajectory of any
length to be taken into account.

(2). Spatial Information: Be able to fully exploit the spatial proper-
ties of the trajectories.

(3). Computational Complexity: Be able to compute the interactions
of spatial information in parallel.

(4). Robustness: Additional issues are required in the trajectory task,
which we explain in detail below:

Our interpretation of robustness is that trajectory user linking
will face a more severe class-imbalance problem compared to general
classification tasks. Since users’ check-in behavior is based entirely
on passive acquisition, the number of collected check-in records and
trajectories varies from user to user, as confirmed by Fig. 2. Gowalla,
Brightkite, and Foursquare are well-known social platforms open-
sourcing check-in record datasets. The differences between users in
terms of number of check-ins and trajectories, and length of trajectories
are huge. One notable problem is the varying length of trajectories,
leading to extreme differences in the raw data received by the model,
similar to noise and distortion issues in image classification. The realis-
tic requirement that the model should not fail in classifying trajectories
of varying lengths from different users poses a significant challenge to
its robustness, which we need to alleviate.

Having observed the drawbacks of existing work on the TUL task
and determined the direction for improvement, we propose a novel
Trajectory-User Linking model based on the Multi-scale Graph
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Fig. 2. Imbalance of samples in terms of the number of trajectories/check-ins, and trajectory length.
Attention network, namely TULMGAT, which aims to address the
aforementioned problems and enhance robustness.

TULMGAT consists of the following four components.
(1) Construction of check-in oriented graphs 𝐶𝑂𝐺𝑠: We first

divide the geographic space into grid cells, then process a single tra-
jectory into a multi-scale collection of trajectories based on different
sampling rates, and finally construct multiple graphs with the grid
representation of trajectories and pre-defined rules.

(2) Node embedding: Masked multi-head self-attention graph neu-
ral network [18] is employed to learn the representation of an arbitrary
number of nodes and Global Average Pooling is adopted to compress
these node vectors to a uniform dimension.

(3) Trajectory embedding: Unlike RNN-based methods that use
temporal models to discover temporal dependencies between nodes, the
BiLSTM we apply is designed to fuse information between scales.

(4) Linking: A simple multi-layer perceptron (MLP) and softmax
function-based module is proposed to link trajectories to their owners.

In addition, we emphasize again that we simultaneously solve the
three main problems above in trajectory-user linking and achieve excel-
lent performance through the novel model we propose. This accurate
and expeditious approach can be quickly applied to real-world scenar-
ios requiring trajectory-user linking, such as optimizing social network
services associated with anonymous users and improving classifica-
tion and anomaly analysis performance. Effectively linking anonymous
trajectories to known users is considered crucial for mining human
mobility patterns and plays an important role in social networks,
transportation, urban planning, social security, and other fields.

We summarize the main four contributions of our work as follows.

• We propose a novel model called TULMGAT to accomplish the
TUL task more effectively and efficiently by simultaneously solv-
ing the above problems (missing context of the original trajectory,
ignorance of spatial information, high time complexity).

• To better represent the spatial information in trajectories, we
construct check-in oriented graphs 𝐶𝑂𝐺𝑠. To improve efficiency
and effectively mine spatial interactions in trajectories, we em-
ploy a masked multi-head self-attention graph neural network
with parallel computing capabilities. To fully retain trajectory
information, we consider global average pooling to allow trajec-
tories of arbitrary length to be explored rather than sampling the
trajectories.

• To further improve the effectiveness and robustness of TULMGAT,
we sample the trajectories with different sampling rates and de-
sign the model to capture the human mobility patterns at multiple
scales based on retaining all valid information in the trajectories.

• The extensive experiments conducted on two publicly available
datasets, Gowalla and Brightkite, demonstrate that TULMGAT
outperforms all compared approaches regarding effectiveness and
efficiency. Moreover, sufficient additional experiments were con-

ducted to verify the effectiveness and robustness of the model.

3 
2. Related work

2.1. Trajectory-user linking

Trajectory-user linking is a classification or recognition task that
links anonymous trajectories to known users who generated them by
mining spatio-temporal properties. TULER [4] is the first model to for-
mulate and investigate this task. Inspired by word embedding in NLP,
TULER regards geographic information in a trajectory as words and
the entire trajectory as a sentence, thus embedding two-dimensional
spatial information into high-dimensional vectors, which allows deep
learning methods to learn underlying information in the trajectory.
TULER initially proposed three variant models based on RNN methods,
namely TULER-LSTM, TULER-GRU, and BiTULER.

Following this work, TULVAE [11] exploits variational inference
to mine latent trajectory distributions and applies semi-supervised
learning to include unlabeled data in training. Both STULIG [12] and
TGAN [19] utilize generative models to enhance the original training
set, with STULIG employing a Variational AutoEncoder (VAE) and
TGAN using a generative adversarial network. DeepTUL [20] designs an
attention module based on historical trajectories to obtain the context
for understanding human mobility patterns, concatenating this context
with the trajectory vector learned by an RNN-based model. TULAR [14]
is the first model that addresses the loss of context in previous models
due to fixed-length trajectory sampling by developing the Trajectory
Semantic Vector (TSV) module to embed arbitrary-length trajectories
and capture hidden mobility features.

While these studies utilize sequential information in trajectories,
they do not effectively use spatial information. GNNTUL [15] tries
to exploit the structural features of trajectories and mines complex
intrinsic geospatial information by sampling a fixed number of sources
nodes and neighboring nodes and utilizing GraphSAGE [17] to learn
their features. TULRN [16] enhances graph construction with priori
road networks and uses Renyi entropy to compute spatial node weights
for sampling in GraphSAGE.

In addition, there are several programs in trajectory user linking.
Introducing unique additional information is a feasible idea. For ex-
ample, MTUL [21] adds POI category labels as spatial dimensions.
Furthermore, some reinforcement learning methods are applied to TUL.
For instance, MainTUL [22] applies distillation learning networks for
reinforcement of trajectory representation, and TULMAL [23] employs
generative adversarial learning to optimize trajectories representation
through a multi-task learning framework with semi-supervised learn-
ing. However, while additional information improves trajectory rep-
resentation, it lacks flexibility and generalizability with new datasets.
Moreover, reinforcement learning schemes do not specifically address
trajectory characteristics and can be applied to any model, so they are
not used as baselines for comparative experiments.
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Table 2
Description of key notations.

Notations Descriptions

𝑢, 𝑟, 𝑔, 𝜏 User, check-in record, gird cell, trajectory
𝑈 , 𝑇 Users set, trajectories set
𝑙 Location information of a check-in record
𝑡 Timestamp of a check-in record
𝐺(𝜏) Grid representation of trajectory 𝜏
𝐞𝜏 Embedding of the trajectory 𝜏 of GAT output
𝐞′𝜏 Embedding of the trajectory 𝜏 of BiLSTM output
𝐶𝑂𝐺𝑠 Graphs generated by corresponding trajectories
𝑣𝑖 Node 𝑖 in graph 𝐶𝑂𝐺
𝑒𝑖𝑗 Edge between node 𝑣𝑖 and node 𝑣𝑗
𝐡𝑖 Representation of the node 𝑣𝑖
𝐡′𝑖 Representation of the node 𝑣𝑖 of GAT output
𝑁𝐺 Number of 𝐶𝑂𝐺𝑠
𝑁𝑖 Number of nodes in 𝐶𝑂𝐺𝑖
𝑁𝑈 Number of users
𝐷𝑣 Embedding dimension of node 𝑣
𝐷𝐺 Embedding dimension of 𝐡′𝑖
𝐷𝑅 Embedding dimension of 𝐞′𝜏

2.2. Graph neural networks

The connections between different items are widely available in
reality, expressed as social networks and knowledge graphs [24]. Re-
search related to graphs has attracted increasing attention in the last
decade. Benefiting from the development of deep learning networks
and graph theory, we can learn nodes features through neural networks.

GCN [25] is one of the earliest graph neural networks, which
generalizes convolutional methods from traditional image to graph. The
core idea of GCN lies in the eigen decomposition of Laplace matrices,
aggregating the features of all neighbors of each node to update the new
node representation. However, GCN’s defects are obvious as all nodes
need to participate in the convolution process, making it transductive
and poorly scalable. GraphSAGE [17] is proposed to give a solution,
aiming to train an aggregator rather than obtain a simple representation
of each node. It updates node features by sampling a fixed number of
neighbor nodes (not limited to first-order neighbors) and designing an
aggregation function. This way, GraphSAGE can learn node features
inductively. However, setting a fixed number of neighbor nodes may
lead to poor node representation and low efficiency on graphs with
high node density. GAT [18] utilizes the masked self-attention mecha-
nism, which assigns different weights to different neighbor nodes when
aggregating node features.

Existing studies for TUL have achieved promising results, but the
problems discussed in Section 1 limit the effective application of their
proposed models. In order to accomplish TUL tasks more effectively
and efficiently, the novel model TULMGAT is developed by addressing
these problems concurrently.

3. Preliminary

In this section, we first present the notations used throughout the
paper in Table 2 and then introduce several definitions. Finally, we
formulate the problem of this study.

Definition 1 (Check-in Record). A check-in record 𝑟 = (𝑢, 𝑙, 𝑡) refers to
the geographic coordinate 𝑙 = (𝑙𝑛𝑔, 𝑙𝑎𝑡) (i.e., longitude and latitude)
generated by user 𝑢 at timestamp 𝑡.

Definition 2 (Grid Index). Given a grid granularity, the check-in space
is divided into grid cells that can be indexed.

Definition 3 (Trajectory). The sequence 𝜏 = (𝑟1, 𝑟2,… , 𝑟𝑛) generated by
user 𝑢 during a time interval is defined as a trajectory, where each 𝑟𝑖
in 𝜏 is a check-in record.
4 
Definition 4 (Graph). Given a trajectory 𝜏 and pre-defined spatial rules,
connect check-in records in the trajectory 𝜏 to obtain a graph 𝐺 to
represent 𝜏.

In summary, after clarifying the limitations of previous TUL work,
we construct a check-in-oriented graph called 𝐶𝑂𝐺 to explore features
beyond the inherent sequential information of trajectories. GPS-based
devices capture users’ check-in records, and for spatial information
within a time interval, we represent the check-in records as grid cells
by Grid Index. By utilizing the inherent sequence relationships of the
nodes within the trajectory and pre-defined spatial rules, we construct
the 𝐶𝑂𝐺 to further explore the human mobility patterns. Details and
examples of the construction of 𝐶𝑂𝐺 will be described in Section 4.1.2.

Problem Formulation. Given a set of anonymous trajectories 𝑇 =
{𝜏1, 𝜏2,…, 𝜏𝑛} and the set of users 𝑈 = {𝑢1, 𝑢2,… , 𝑢𝑚} who generated
them, the task of TUL is to learn a classifier to link these anonymous
trajectories to their owners: 𝑇 ↦ 𝑈 .

4. TULMGAT

In this section, we describe the architecture and technical details
of TULMGAT. As shown in Fig. 3, it has four main modules: (1)
Construction of Check-in Oriented Graphs: We construct multiple
check-in oriented graph 𝐶𝑂𝐺s of different scales to mine node features
based on the trajectory order and pre-defined graph knowledge. (2)
Node Embedding: For each node of a 𝐶𝑂𝐺, we embed it into a low-
dimensional vector space with a graph attention network and apply
global average pooling to aggregate the embeddings of an arbitrary
number of nodes into a uniform dimension. (3) Trajectory embedding:
A BiLSTM is designed to fuse information between scales (4) Linking:
A multi-layer perceptron (MLP) and softmax function-based linking
module is used to link anonymous trajectories to corresponding users.

4.1. Construction of check-in oriented graphs

4.1.1. Grid index and embedding
To study the spatio-temporal information of trajectories in more

detail, we need to design a complete and generalized representation
of trajectories first.

As we know from Section 3, a check-in record contains at least two-
dimensional spatial information with a timestamp, and a trajectory is a
collection of check-in records over a fixed time interval. To effectively
extract the spatial features involved in the check-in records, we first
process the check-in records as trajectories according to Definition 3,
and then partition the geographic space by grid index according to
Definition 2.

Grid index is designed to divide geographic information into grids
for encoding and representation. For example, given a grid granularity,
as shown in Fig. 4, the space is divided into 𝑁 × 𝑁 grid cells (𝑁
is assumed to be 4 here). The trajectory 𝜏 can then be denoted as a
sequence of grid cells: 𝐺(𝜏) = (𝑔11, 𝑔12, 𝑔12, 𝑔23, 𝑔13, 𝑔24, 𝑔33, 𝑔34, 𝑔43, 𝑔31).
Note that to preserve the real human mobility patterns in the context of
the original trajectories, we do not sample and pad the check-in records
in this process.

It should be noted that because the earth is an approximate el-
lipsoid, the size of each longitude and latitude is not the same. The
distance of each degree of latitude is about 111 km, but the distance of
each degree of longitude is 111𝑐𝑜𝑠𝜃 kilometres where 𝜃 is the latitude of
the specific coordinates. Therefore, using a Grid Index with fixed grid
granularity may cause unfair division on longitude. In navigation and
other geographic location applications, complex cartographic rules and
coding methods are often involved, but in Trajectory-User Linking such
errors are acceptable.

Compared to the additional spatial location information or pre-
processing required for POI clustering [10], Grid Index is a fast and

effective way of spatial delineation. Moreover, the different densities
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Fig. 3. The structure of TULMGAT.
Fig. 4. An example of the construction of the graph 𝐶𝑂𝐺.

of urban functional areas can cause sparsity in clustering POIs, leading
to inconsistent and low sampling rates of trajectories. Therefore, we
adopt a grid index to represent trajectories initially [26], which have
been proven to be effective in representing spatial information in other
work [16,27].

Embedding encodes grids as low-dimensional dense vectors, facil-
itating deep learning models to learn human mobility patterns in tra-
jectories. The number of grids after check-in records or traffic datasets
is very large. For instance, the Gowalla dataset used in our work
has at least tens of thousands of effective grids after the grid index.
Traditional bag-of-words models or one-hot encoding obviously cannot
effectively represent the trajectory because of sparsity and other issues.
Therefore, similar to TULER [4], we apply CBOW in Word2Vec [9] to
process grids to obtain differentiated representation vectors. However,
there is always a correlation between geographical locations because of
the user’s check-in behavior and spatial proximity. Compared to word
embedding which treat grids as words and trajectories as sentences,
randomly initialized node representations are not recommended and
often fail to train due to illogical parameter settings.

4.1.2. Check-in oriented graph
Intuitively, trajectories are not only temporal sequences but also

natural directed graphs. Recent work has shown that trajectories, espe-
cially those taken from geospatial space, should not be treated as pure
temporal sequences, and there has been much success in exploring the
valid information contained in trajectories from a non-Euclidean per-
spective and accomplishing downstream trajectory-related tasks [28].
5 
However, the directed graphs directly translated from trajectories
are sparse, with the number of edges equal to the number of nodes
minus one (|𝐸| = |𝑉 |−1), which is obviously not conducive to making
full use of the information about the node neighbors, for which we
draw on pre-defined rules or metadata to extend the graph structure.
In general, graph extension methods can be classified as:

• Rule-based: Euclidean distance or geodesic distance [29] can
effectively represent the spatial relationship between nodes. If the
distance between two nodes is considered to be less than a given
threshold, we consider that there is a reliable edge relationship
between nodes.

• Metadata-based: Metadata requires additional collection. Nodes
can be considered to be connected if some additional attribute of
two nodes is told to be the same or similar, such as road ID [16],
user identification, and user behavioral interactions [30].

In our work, since there is no additional metadata, we choose a
rule-based pre-defined graph construction method and apply Euclidean
distances to determine the spatial relationships between nodes. This
approach is similar to treating trajectories as images [7], but to address
issues like image sparsity, we treat trajectories as non-Euclidean graphs
to further learn trajectories features by graph neural networks.

𝑒𝑖𝑗 =

{

1 𝑖𝑓 (𝑥𝑖 − 𝑥𝑚)2 + (𝑦𝑗 − 𝑦𝑛)2 ≤ 𝜆,

0 𝑒𝑙𝑠𝑒.
(1)

As shown in Eq (1), we take the Euclidean Distance to determine
whether two grids 𝑔𝑖,𝑗 and 𝑔𝑚,𝑛 are connected, where 𝑥 and 𝑦 denote
the grid subscripts and 𝜆 is the human-set threshold. In our work
the threshold is set to 2, meaning a grid is connected to eight of its
neighbors. Briefly speaking, if two grids 𝑔𝑖,𝑗 and 𝑔𝑚,𝑛 are in a trajectory,
we connect them if they are adjacent in geographic space, even if they
do not have a first-order neighbor relationship [31] that comes from the
sequential nature of the trajectory. For instance, as shown in Fig. 4, 𝑔23
and 𝑔34 originally have no direct edge relationship, but we connect 𝑔23
and 𝑔34 with undirected edges based on rules.

Although the rule-based pre-defined graph may seem plain, it alle-
viates the shortcomings of the Grid Index. Data variation [32] refers
to grids generated in the same area being considered as the same
class but treated separately due to specific coordinate values and slight
differences. Therefore, the rule-based pre-defined graph connecting
adjacent grids actually addresses both sparsity and data variation in
trajectory graph representation.

With this scheme, as demonstrated in Fig. 4, we process the Check-in
Records collected at a time interval as grids. Then, the grids are directly
processed into a sparse directed graph (Check-in Oriented Trajectory)
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based on temporal order and a pre-defined graph based on Euclidean
Distance. Finally, we merge the two graphs to obtain the Check-in
Oriented Graph 𝐶𝑂𝐺 representing the original trajectory. A check-ins
oriented graph 𝐶𝑂𝐺 is represented as 𝐺(𝑉 ,𝐸, 𝐹 ): (i) 𝑉 is the set of
nodes in a trajectory, where grids represent the nodes; (ii) 𝐸 is the set
of edges between the grids; (iii) 𝐹 is the set of initial embeddings of
nodes by performing Word2vec on the grids in all trajectories.

4.1.3. Multi-scale sampling
Due to the natural randomness of user check-in behavior, the num-

ber of trajectories and nodes included in the trajectories are always
different between users as shown in Fig. 2, which leads to models
that tend to have unstable performance differences over trajectories
of different lengths. As a result, we propose to process every single
trajectory with different sampling rates to improve the robustness of
our model.

With the overall graph structure maintained, we set multiple sam-
pling rates, such as 100% (no sampling), 50% (sampling every two
nodes), and 33% (sampling every three nodes) to delete nodes from
the check-ins oriented trajectories and adjust the connections of the
remaining nodes based on the pre-defined graph to obtain several dif-
ferent 𝐶𝑂𝐺𝑠 as illustrated in Fig. 3. However, it should be emphasized
that the 𝐶𝑂𝐺𝑠 still collectively represent a single trajectory and simply
enter the different GAT channels in Node Embedding.

4.2. Node embedding

Following the construction of the graphs 𝐶𝑂𝐺𝑠, we design a neural
network module to learn the representation of geographic informa-
tion in trajectories. From the way we construct 𝐶𝑂𝐺𝑠, the original
sequential visits in the trajectories are designed as directed edges, and a
rule-based pre-defined graph complements the spatial information and
alleviates sparsity, which actually weakens the temporal properties of
the human mobility pattern. However, recent research work [27,33]
has demonstrated that the spatial properties of trajectories actually play
a more critical role. Therefore, optimizing the node representation in
trajectories by graph neural network is crucial in TULMGAT.

Graph attention network (GAT) module optimizes node represen-
tation in 𝐶𝑂𝐺𝑠. Each GAT processes the COG at the correspond-
ing sampling rate, with several GATs in parallel throughout Node
Embedding.

Assume the input of each graph attention layer is a set of node
vectors 𝐡 = {𝐡1,𝐡2,… ,𝐡𝑁𝑖

}, 𝐡𝑖 ∈ 𝑅𝐷𝑣 , where 𝑁𝑖 represents the
arbitrary number of nodes in a 𝐶𝑂𝐺 and 𝐷𝑣 is the initial embedding
dimension of the node. In our work, the set of embeddings of nodes
𝐹 obtained by Word2vec is utilized as the initial input of GAT. The
output of each graph attention layer is a new set of node vectors
𝐡′ = {𝐡1′,𝐡2′,… ,𝐡𝑁 ′},𝐡𝑖′ ∈ 𝑅𝐷𝐺 , where 𝐷𝐺 is the dimension of the
ew vector, and the details of obtaining 𝐡′ are discussed as follows.

Although GNNTUL [15] based on GraphSAGE [17] exploits node
eatures, it suffers from the following problem: (i). When aggregating
ode features, it does not consider the different importance of neighbor-
ng nodes, ignoring interaction information between different check-in
ecords from a spatial perspective. (ii). GraphSAGE samples a fixed
umber of neighboring nodes, which results in serious information
oss for trajectories with an uncertain number of nodes. Different from
NNTUL, our proposed model, TULMGAT, effectively solves the prob-

ems by applying the graph attention network with masked multi-head
elf-attention to learn nodes representations. Similar to the general
ttention mechanism, GAT calculates the attention value 𝑒𝑖𝑗 between
ource node 𝑣𝑖 and neighbor node 𝑣𝑗 based on their representation

vectors:

𝑒𝑖𝑗 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝐚𝑇 (𝑊 𝐡𝑖 ∥ 𝑊 𝐡𝑗 )) (2)

where 𝐚 is a 𝑅𝐷𝐺×𝐷𝐺 mapping which is implemented by a single-layer
𝐷𝑣×𝐷𝐺
feed-forward neural network, 𝑊 ∈ 𝑅 is a weight matrix shared by

6 
all 𝐡𝑖. Moreover, we apply 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 to perform nonlinear activation
for each pair of concatenated 𝑊 𝐡 to ensure that the directed attention
relation has been learned and prevent the node’s own features 𝐡𝑖 from
being smoothed out by the subsequent normalization.

In general, transductive graph neural networks such as GCN re-
quire updating all known nodes simultaneously, and the self-attention
mechanism tends to assign attention to all known elements. However,
since each trajectory contains only a few nodes, observing all nodes
of all trajectories to update a single node within a single trajectory
has high time complexity. Furthermore, it can lead to the loss of
unique structural information within a single trajectory due to over-
computation. Therefore, we adopt the masked attention mechanism,
where each node computes attention to only its own neighbor nodes
within a single trajectory:

𝑎𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑖𝑗 )

=
𝑒𝑥𝑝(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (a𝑇 [𝑊 h𝑖 ∥ 𝑊 h𝑗 ]))

∑

𝑘∈𝑖
𝑒𝑥𝑝(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (a𝑇 [𝑊 h𝑖 ∥ 𝑊 h𝑘]))

=
𝑒𝑥𝑝(𝑒𝑖𝑗 )

∑

𝑘∈𝑖
𝑒𝑥𝑝(𝑒𝑖𝑘)

(3)

where 𝑖 is the set of neighbor nodes of 𝑣𝑖 in a single trajectory.
o obtain accurate and stable inter-node relationships in self-attention
alculation, we introduce a multi-head self-attention mechanism to
mprove the model’s ability to characterize the spatial relationships
etween nodes. For the output of the middle layer, we apply 𝐾 dif-

ferent 𝑊 to calculate the attention and derive the output vector 𝐡′𝑖 by
concatenating:

𝐡′𝑖 =∥
𝐾
𝑘=1 𝜎(

∑

𝑗∈𝑖

𝑎𝑘𝑖𝑗𝑊
𝑘𝐡𝑗 ) (4)

Notably, the number of 𝐡′𝑖 in 𝐡′ computed for different trajectories
is variable due to different amount of geographic locations contained
in trajectories. To ensure all nodes in a trajectory are considered and
form a uniform dimensional vector for the next network layer, we apply
Global Average Pooling, which replaces the final fully connected layer
in the graph attention network. Global average pooling averages the
feature vectors of all nodes and aggregates them to a fixed dimension.
As there is no learnable parameter, the global average pooling can
significantly alleviate potential overfitting problem. In the final stage
of GAT, we feed 𝐡′ into the global average pooling to get the trajectory
representation 𝐞𝜏 at a single scale:

𝐞𝜏 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝐡′1,𝐡
′
2,… ,𝐡′𝑁 ), 𝐞𝜏 ∈ 𝑅𝐷𝐺 (5)

Following this way, we generate several 𝐶𝑂𝐺𝑠 with each sampling
scale for the same trajectory and concatenate the trajectory represen-
tations 𝐞𝑘𝜏 of 𝑁𝐺 COGs as the final trajectory representation of this
module.

𝐞𝜏 =∥𝑁𝐺
𝑘=1 𝐞

𝑘
𝜏 (6)

4.3. Trajectory embedding

After obtaining the representation of multiple 𝐶𝑂𝐺𝑠 for a single
trajectory, we flatten 𝐞𝜏 ∈ 𝑅𝑁𝐺𝐷𝐺 to represent the trajectory and apply
an RNN-based model to mine the interaction of different scales.

Distinguish from previous TUL methods in which RNN-based model
is designed for mining the sequential relationships between node em-
beddings within a trajectory, we apply the bidirectional LSTM model
to capture the relationships between representations of the same tra-
jectory at different scales due to sampling rates, which has no explicit
directional temporal dependence.

As an extension of RNN, LSTM introduces memory cells with differ-
ent structures. The LSTM cell at each moment contains an input gate 𝑖𝑡,

a forget gate 𝑓𝑡, and an output gate 𝑜𝑡. The input of the cell at current
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moment will include the current input 𝑥𝑡, the hidden state ℎ𝑡−1 and the
cell state 𝑐𝑡−1 of the previous moment:

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (7)

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓 ) (8)

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (9)

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑡𝑎ℎ𝑛(𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐 ) (10)

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎ℎ𝑛(𝑐𝑡) (11)

where all 𝑊 ∈ 𝑅𝑁𝐺𝐷𝐺×𝐷𝑅 and 𝑏 are learnable parameters, ⊙ is the
symbol for Hadamard product, 𝜎, 𝑡𝑎ℎ𝑛 are activation functions, and the
initial input 𝑥 for BiLSTM is 𝐞𝜏 . At time 𝑡, the output of BiLSTM to the
fully connected neural network is to concatenate the hidden state ℎ𝑡 of
the forward LSTM and the hidden state ℎ̂𝑡 of the backward LSTM as the
ultimate trajectory representation:

𝐞′𝜏 = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑡, ℎ̂𝑡) (12)

It should be made clear that trajectory embedding is never the focus
of our work, but replacing it with a simple projection in ablation ex-
periments in Section 5.3.4 still degrades performance a bit. Moreover,
time complexity experiments in Section 5.2.3 will show that the main
training time of TULMGAT is spent on this and later linking layers,
and that more advanced but complex coding methods such as dilated
temporal convolution, attention network, or even Transformer are cer-
tainly worth considering because of accuracy, but can be detrimental
to the computational complexity we are aiming for, and the RNN-based
models have always maintained the right balance between accuracy
and training time for Trajectory User Linking.

4.4. Trajectory-user linking

Generally, TUL can be regarded as a classification problem in which
trajectories are classified into individual users. A Multi-Layer Percep-
tron (MLP) and Softmax function based network is proposed to link tra-
jectories to the users who generated them. The ultimate representation
𝐞′𝜏 of trajectory 𝜏 is fed into MLP:

𝑌 = 𝑊 𝐞′𝜏 + 𝑏 (13)

where 𝑊 ∈ 𝑅𝐷𝑅×𝑁𝑈 and 𝑏 are the learnable parameters in the multi-
layer perceptron. Assume the output of MLP 𝑌 = {𝑦1, 𝑦2,… , 𝑦𝑛}, we
alculate the probability that 𝜏 is generated by 𝑢𝑖 through Softmax
unction:

(𝑦𝑖) =
𝑒𝑥𝑝(𝑦𝑖)

∑𝑛
𝑗=1 𝑒𝑥𝑝(𝑦𝑗 )

(14)

.5. Training settings

In the node embedding module, we apply a two-layer graph atten-
ion network to learn node representations. Moreover, we use
𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 activation in the update process of multi-headed self-
ttention layer and 𝑅𝑒𝐿𝑈 activation between graph attention layers. In
ddition, we set up dropout layers to mitigate the over-fitting problem.
n the trajectory embedding module, we initialize the hidden states
nd cell states of the BiLSTM with all-zero initialization. In the linking
odule, we employ the 𝑐𝑟𝑜𝑠𝑠-𝑒𝑛𝑡𝑟𝑜𝑝𝑦 function as the loss function and

dopt 𝐴𝑑𝑎𝑚 as the optimizer.

. Experiment

In this section, we verify the performance of the proposed model
ULMGAT in two aspects, including comparative experiments and
alidity experiments. In comparative experiment, we present the statis-
ics of datasets, evaluation metrics, baselines, and conduct extensive
xperiments with existing mainstream models on publicly available
7 
able 3
tatistics of datasets.
Datasets ∣𝑈 ∣ ∣𝑇 ∣ ∣𝐺∣ ∣𝐴𝑣𝑔∣ ∣𝐸∣ ∣𝐶 ∣

Gowalla 247 14,780 20,132 11.85 115,364 175,177
149 8976 10,433 11.61 61,679 104,240

Brightkite 223 23,938 13,601 8.60 84,315 205,859
141 15,739 9273 8.34 55,738 131,243

Foursquare-NYC 1083 49,769 17,652 1.93 150 943 95,887
Foursquare-TKY 2293 118,252 20,597 2.45 252 197 289,978

datasets. In model validity experiments, we will test the robustness of
TULMGAT’s variants, compare GAT with other graph neural networks,
examine the performances under single-scale trajectories, and validate
the effectiveness of each module through ablation experiments. In
addition, the effect of main parameters and the effectiveness of the
multi-scale trajectory sampling scheme will be examined by comparing
it with TULGAT, which does not adopt multi-scale trajectory sampling.
Our code is accessible.1

5.1. Datasets and evaluation metrics

We perform all experiments on two publicly available datasets:
Gowalla2 and Brightkite.3 Moreover, we add the public datasets
Foursquare4 in comparative experiment to enhance the persuasiveness.

As shown in Section 4.1.1, we represent check-in records as grids
according to Grid Index and embed the grids of the training dataset as
vectors by CBOW. In this way, we represent sequential trajectories of
varying lengths according to the daily check-in records, while whether
the trajectories are sampled with a fixed length depends on the specific
model. Furthermore, based on the methods in Sections 4.1.2 and 4.1.3,
a single trajectory is further processed into check-in oriented graphs
𝐶𝑂𝐺𝑠 for GNN-based methods.

The statistics of datasets are summarized in Table 3, where |𝑈 |

denotes the number of users, |𝑇 | is the number of trajectories, |𝐺| is
he number of grid cells that contain at least one check-in record, |𝐴𝑣𝑔|
s the average number of check-in records per trajectory, |𝐸| is the

number of all unique edges in all graphs 𝐶𝑂𝐺𝑠. |𝐶| is the number of all
check-in records involved. It should be noted that due to open source
issues and different methods of pre-processing location information, we
are unable to standardize the dataset settings with previous work. For
Foursquare, we apply two open source datasets in New York(NYC) and
Tokyo(TKY). For all datasets, we sequentially intercept some of the
data for experimentation and use one day as the time interval for the
trajectories. Referring to the parameter settings in [27] and [16], we
select the appropriate grid granularity for each dataset to obtain the
above data.

Similar to previous work [4,14], we employ ACC@1, ACC@5,
macro-P, macro-R and macro-F1 as evaluation metrics. ACC@K in-
dicates the classification accuracy of user linking, and Macro-F1 is
the average F1 value of all user categories or the harmonic mean of
precision (macro-P) and recall (macro-R):

𝐴𝐶𝐶@𝐾 =
#𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦𝑖𝑑𝑒𝑛𝑡𝑖𝑓 𝑖𝑒𝑑𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠@𝐾

#𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠
(15)

𝑎𝑐𝑟𝑜-𝐹1 = 2 × 𝑚𝑎𝑐𝑟𝑜-𝑃 × 𝑚𝑎𝑐𝑟𝑜-𝑅
𝑚𝑎𝑐𝑟𝑜-𝑃 + 𝑚𝑎𝑐𝑟𝑜-𝑃 (16)

1 https://github.com/blisky-li/TULMGAT.
2 https://snap.stanford.edu/data/loc-Gowalla.html.
3 https://snap.stanford.edu/data/loc-brightkite.html.
4
 https://sites.google.com/site/yangdingqi/home/foursquare-dataset.

https://github.com/blisky-li/TULMGAT
https://snap.stanford.edu/data/loc-Gowalla.html
https://snap.stanford.edu/data/loc-brightkite.html
https://sites.google.com/site/yangdingqi/home/foursquare-dataset
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Table 4
Parameters details.

Parameter Available range Recommended value

Vector size(𝐷𝑣) [128,300] 128
Hidden size in baselines [300, 1000] 500
Learning rate [0.0025, 0.00095] 0.0025
Batch size [32, 128] 64
Dropout rate [0, 0.55] 0.25

Stacked GAT [2, 4] 2
𝐷𝐺 [16, 64] 32
𝐷𝑅 [32, 128] 64
Number of heads [6,12] 12

5.2. Comparative experiments

5.2.1. Baselines and parameter setting
We compare our model TULMGAT with the following TUL baselines:

• TULER [4]. TULER is the first model to solve the task TUL, and
utilizes various RNNs to learn user mobility and implement classi-
fication tasks. We applied variants of TULERs for the comparative
experiments, including TULER-LSTM, TULER-GRU, and BiTULER.

• TULVAE [11]. The model learns human mobility patterns in a
semi-supervised manner, and attempts to mine deep semantic
information in trajectories through Variational Autoencoder.

• TULAR [14]. TULAR is the first work to focus on information
loss due to sampling. It proposes an unsupervised TSV module
to aggregate trajectories of arbitrary length after an RNN-based
model and applies an attention mechanism to filter trajectory
distribution information.

• STULIG [12]. STULIG adds hierarchical potential factors to TUL-
VAE to examine the characteristics of trajectory distribution from
multiple perspectives, and extends the training data by generating
synthetic yet plausible trajectories.

• GNNTUL [15]. GNNTUL is the first model that treats trajectories
as graph and applies graph neural networks. It samples a fixed
number of nodes based on the GraphSAGE model and updates
node embeddings based on neighboring nodes for user unique
mobility mining.

• TULRN [16]. TULRN is an improvement of GNNTUL, it replaces
the location information in GNNTUL with a priori road network
and introduces k-Renyi entropy to calculate the weights of nodes
of trajectories in training dataset. In this way, weighted neighbor
sampling is performed on nodes in each unknown trajectory
instead of random sampling in GraphSAGE.

For our model TULMGAT, we set three sampling rate strategy(A:
00%/ No sampling; B: 50%/ Sample every two nodes; C: 33%/ Sam-
le every three nodes) and obtain four variants about TULMAT: (1)
ULMGAT-O: Strategy A. Due to no sampling of the original trajectory,
ULMGAT-O is also called TULGAT. (2) TULMGAT-T: Strategy A+B.
3) TULMGAT-TH: Strategy A+B+C. They concatenates the output of
lobal average pooling. (4) TULMGAT-Add: The output of the global
verage pooling is directly accumulated as the trajectory representation
n the basis of TULMGAT-TH.

All experiments are performed on trajectory data divided based on
rid index, and the embedding size of trajectory nodes of Word2vec is
28. Other experimental parameters for baselines follow the settings
eported in their papers and we emphasize that the sample length of
heir trajectories is always 9. For TULMGAT, the optimizer is Adam
ith a learning rate of 0.0025, the embedding dimension of single head
f GAT is set to 32, and the dropout rate is 0.25. More sufficient details
f parameters are given in Table 4.
8 
5.2.2. Experimental analysis
The experimental results of all approaches on given datasets are

presented in Table 5, the best experimental results are marked boldly,
and the best results in baselines are underlined. To be clear, we could
not record the TULVAE and STULIG results on Foursquare datasets
because they are just too time consuming.

Observed from this, the proposed model TULMGAT performs better
than baselines in all metrics. On Gowalla ∣149∣, compared to GNNTUL
which is the best model in baselines in terms of ACC@1, TULMGAT-
T achieves the best results yielding 6.08%, 2.72%, 5.33%, 5.12%,
and 5.23% improvements for ACC@1, ACC@5, macro-P, macro-R and
macro-F1 metrics. On Gowalla ∣247∣, TULMGAT-TH achieves the best
results in terms of ACC@1, yielding 4.44%, 1.30%, 2.66%, 3.27%, and
2.99% improvements compared to TULRN, which is the best model in
baselines. On Brightkite ∣141∣, TULMGAT-TH achieves the best results
in terms of ACC@1, yielding 4.88%, 1.22%, 5.28%, 7.09%, and 6.22%
improvements compared to TULRN. On Brightkite ∣223∣, TULMGAT-O
achieves the best results in terms of ACC@1, yielding 4.36%, 1.67%,
5.98%, 6.59%, and 6.30% improvements compared to TULRN for
ACC@1, ACC@5, macro-P, macro-R and macro-F1 metrics. Undoubt-
edly, our work on Foursquare also achieves the best results. Our best
model TULMGAT-TH on Foursquare-NYC outperforms TULRN on five
metrics by 7.39%, 6.34%, 6.01%, 7.91% and 7.02%, and TULMGAT-
TH on Foursquare-TKY outperforms GNNTUL by 5.65%, 7.26%, 6.64%,
7.19% and 6.94% on the five metrics.

Among the variants of TULMGAT, it is clear that the performance of
TULMGAT-Add is significantly weaker than the other variants because
the information on different scales is accumulated after global average
pooling, which undoubtedly leads to information coupling. Therefore,
TULMGAT-T and TULMGAT-TH can usually outperform TULMGAT-O
(TULGAT), indicating that mining trajectory information from different
sampling scales is effective, but there are still subtle differences because
of different datasets. Overall, the model performance on multi-scale tra-
jectory sampling is excellent and stable, meaning that it can converge
faster to a result we can accept. Specifically, TULMGAT performs better
for those reasons:

(1) TULMGAT effectively represents trajectories as graph structures
and introduces graph neural network learning, which fully explores the
features of geographic locations and their interactions;

(2) TULMGAT employs global average pooling to achieve the appli-
cation of all geographic locations in trajectories, which fully exploits
the complete context information of trajectories. Significantly, the
trajectories in Gowalla and Brightkite are long as shown in Table 3
and larger than the number of samples in baselines, but trajectories in
Foursquare tend to be shorter, so we attribute the failure of baselines
to the fact that the former is missing trajectory information while the
latter fills in too much redundancy resulting in feature smoothing;

(3) TULMGAT utilizes a multi-head self-attention mechanism to
effectively mine the deep semantic information and user mobility pat-
terns of trajectories.

(4) TULMGAT samples trajectories at multiple scales and uses an
RNN-based model to mine the interactions between the scales, which
learns the representation of trajectories from different spatial perspec-
tives while preserving all the original information.

5.2.3. Computational complexity analysis
Next, we analyze the computational complexity of each model. For

descriptive convenience, we use 𝑛 to denote the number of original
or sampled nodes in the trajectory, which do not differ significantly.
𝐸 denotes the original embedding of a node and 𝐹 represents the
embedding of a node after feature extractor. In addition, 𝑒 refers to
he number of edges in the trajectory graph. We should notice that
< 𝐹 < 𝐸 and 𝑒 ≪ 𝑛2 in most instances.

Computational complexity of each model after omitting MLP clas-
sifier are shown in Table 6. The computational complexity of the

models represented by TULER comes mainly from the RNN model.
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Table 5
Comparison of TULMGAT with others methods on different datasets.

Gowalla

Method ∣𝑈 ∣ = 149 ∣𝑈 ∣ = 247

ACC@1 ACC@5 macro-P macro-R macro-F1 ACC@1 ACC@5 macro-P macro-R macro-F1

TULER-LSTM 45.52% 64.32% 42.93% 35.71% 38.99% 42.87% 60.12% 40.08% 32.64% 35.98%
TULER-GRU 44.98% 64.18% 41.97% 35.58% 38.51% 42.09% 59.74% 38.83% 32.92% 35.63%
BiTULER 45.86% 64.47% 43.07% 35.88% 39.15% 43.36% 60.34% 39.98% 33.71% 36.58%
TULVAE 49.57% 69.72% 46.28% 41.68% 43.86% 47.82% 64.03% 42.88% 39.04% 40.87%
TULAR 54.24% 71.89% 51.17% 46.80% 48.89% 52.84% 69.42% 50.19% 47.84% 48.99%
STULIG 51.98% 70.64% 48.46% 42.93% 45.53% 49.69% 66.74% 44.85% 41.76% 43.25%
GNNTUL 54.64% 71.16% 51.31% 47.44% 49.30% 52.65% 68.82% 49.51% 47.06% 48.25%
TULRN 54.46% 70.76% 51.07% 48.13% 49.56% 54.04% 69.81% 50.66% 47.52% 49.04%

TULMGAT-O 60.09% 73.32% 53.95% 50.65% 52.25% 57.80% 70.73% 53.58% 51.05% 52.28%
TULMGAT-T 60.72% 73.88% 56.64% 52.56% 54.53% 58.39% 71.47% 54.15% 51.43% 52.76%
TULMGAT-TH 58.39% 71.47% 54.15% 51.43% 52.76% 58.48% 71.11% 53.32% 50.79% 52.03%
TULMGAT-Add 59.57% 72.50% 54.05% 50.91% 52.43% 57.44% 71.22% 54.38% 49.17% 51.64%

Brightkite

Method ∣𝑈 ∣ = 141 ∣𝑈 ∣ = 223

ACC@1 ACC@5 macro-P macro-R macro-F1 ACC@1 ACC@5 macro-P macro-R macro-F1

TULER-LSTM 55.05% 67.35% 50.66% 44.62% 47.45% 54.21% 66.42% 49.84% 43.79% 46.62%
TULER-GRU 55.45% 67.82% 51.89% 44.29% 47.79% 54.89% 66.06% 50.51% 44.88% 47.53%
BiTULER 55.62% 67.93% 51.81% 44.78% 48.04% 54.87% 67.06% 50.36% 44.29% 47.13%
TULVAE 61.87% 74.83% 57.41% 52.09% 54.62% 60.23% 72.12% 55.28% 51.75% 53.46%
TULAR 69.83% 83.47% 63.19% 58.45% 60.73% 68.78% 82.19% 61.67% 58.40% 59.99%
STULIG 65.98% 78.56% 60.69% 55.87% 58.18% 65.30% 77.64% 59.43% 54.92% 57.09%
GNNTUL 70.26% 83.61% 62.63% 59.80% 61.18% 69.39% 82.58% 62.23% 59.01% 60.58%
TULRN 70.93% 84.10% 64.28% 60.34% 62.25% 70.90% 83.15% 63.40% 59.67% 61.48%

TULMGAT-O 75.34% 85.28% 70.33% 66.55% 68.39% 75.26% 84.82% 69.38% 66.26% 67.78%
TULMGAT-T 75.66% 85.28% 70.26% 66.80% 68.48% 74.78% 84.61% 69.92% 66.39% 68.11%
TULMGAT-TH 75.81% 85.32% 69.56% 67.43% 68.47% 74.85% 84.35% 68.35% 66.28% 67.30%
TULMGAT-Add 75.07% 85.09% 70.24% 66.43% 68.28% 74.44% 84.53% 69.10% 65.83% 67.43%

Foursquare

Method NYC TKY

ACC@1 ACC@5 macro-P macro-R macro-F1 ACC@1 ACC@5 macro-P macro-R macro-F1

TULER-LSTM 45.85% 58.00% 41.14% 36.10% 38.46% 36.06% 47.85% 25.92% 22.09% 23.85%
TULER-GRU 43.87% 57.98% 40.88% 35.96% 38.26% 35.32% 48.21% 25.48% 22.29% 23.78%
BiTULER 46.71% 58.62% 42.04% 36.52% 39.09% 37.28% 49.17% 27.91% 24.72% 26.22%
TULVAE – – – – – – – – – –
TULAR 51.49% 63.28% 47.89% 44.91% 46.35% 40.89% 52.99% 30.68% 29.02% 29.83%
STULIG – – – – – – – – – –
GNNTUL 52.88% 64.83% 46.87% 44.32% 45.56% 41.79% 53.61% 31.90% 29.73% 30.77%
TULRN 53.01% 65.03% 47.15% 43.98% 45.50% 41.59% 53.56% 31.36% 28.69% 29.97%

TULMGAT-O 60.22% 71.40% 52.47% 51.57% 52.01% 46.91% 60.82% 38.30% 36.50% 37.38%
TULMGAT-T 60.33% 71.94% 52.75% 51.56% 52.15% 47.10% 60.94% 38.25% 36.50% 37.35%
TULMGAT-TH 60.40% 71.37% 53.16% 51.89% 52.52% 47.44% 60.87% 38.54% 36.92% 37.71%
TULMGAT-Add 59.99% 71.25% 52.71% 51.49% 52.10% 46.83% 60.72% 38.22% 36.28% 37.22%
Table 6
Computational complexity of each model.

Model Computational complexity

TULER-LSTM & TULER-GRU & BiTULER 𝑂(𝑛2𝐸𝐹 )
TULVAE & STULIG 𝑂(𝑛2𝐸𝐹 + 𝑛2𝐸𝐹 )
TULAR 𝑂(𝑛2𝐸 + 𝑛𝐸𝐹 )
GNNTUL & TULRN 𝑂(𝑛2𝐸𝐹 + 𝑛𝐹 2)
TULMGAT 𝑂(𝑛𝐸𝐹 + 𝑒𝐹 + 𝐹 2)

TULVAE and STULIG have additional computational overhead from the
decoder because of the application of the generator. TULAR requires the
computation of attention, but TSV reduces the dimensionality of sub-
sequent vectors by averaging the node information. The computational
cost of GNNTUL and TULRN are derived from RNN and aggregation
operation in GraphSAGE. The GAT part of TULMGAT has strong par-
allel computation capability and global average pooling reduces the
vector dimension of subsequent trajectory embeddings. The theoretical
calculation reveals that our work possesses the lowest computational
complexity and we are able to parallelize the attention computation
for 𝑛 nodes in the 𝑂(𝑛𝐸𝐹 ) part which is not possible for the RNN-based

odel.
9 
The training hours for all models on NVIDIA TESLA PCIe V100S 32G
are presented in Table 7, where we report results on Gowalla ∣247∣,
Brightkite ∣223∣ and two Foursquare datasets. Generative models like
TULVAE and STULIG are very time-consuming because they require
the construction of latent distributions to mine the semantics of trajec-
tories. Moreover, the loss functions generated by their generators and
classifiers are difficult to converge quickly, and we could not run them
because it was too time consuming on Foursquare datasets. GNNTUL
has the lowest runtime among all baselines because it samples a fixed
number of neighbors to update node features, and the learning of graph
structures tends to be highly parallel. The training time of TULRN
is slightly longer compared to GNNTUL because of the extra edge
weight calculation and screening. Unsurprisingly, our proposed model,
TULMGAT, is far more efficient than all the baselines. This is because
the computation of multi-head attention is independent and parallel,
and the global average pooling can compress an arbitrary number
of node embeddings into a low-dimensional trajectory representation,
which greatly reduces the time complexity of learning user mobility
from trajectories.

Moreover, in the TULMGAT variants, there is a subtle difference in

training time for models that use graph structures at different scales.
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Table 7
Training hours of all methods on NVIDIA V100 32G (h).

Dataset BiTULER TULVAE STULIG TULAR GNNTUL TULRN TULMGAT-TH TULMGAT-T TULMGAT-O

Gowalla ∣247∣ 1.25 12.65 9.5 1.75 0.67 0.85 0.20 0.19 0.17
Brightkite ∣223∣ 1.45 13.9 11.05 2.25 1.05 1.21 0.34 0.32 0.28
Foursquare NYC 4.07 – – 4.82 3.25 3.75 0.90 0.82 0.75
Foursquare TKY 8.30 – – 10.32 7.25 8.50 2.32 2.17 2.03
TULMGAT-O, which uses only the original graph structure, shows more
than 15% improvement in training time compared to TULMGAT-TH,
which utilizes graphs at all three scales. In reality, whether to sacrifice
some time to improve the robustness of the model as well as a small
amount of accuracy depends on the data quality and data volume in the
specific application scenario. However, the differences in training time
among TULMGAT variants come from the number of GAT networks,
and the gaps are small, suggesting that the main training time is spent
on the Trajectory Embedding and Linking modules.

In conclusion, the core starting point of our work lies in a clearer
and more detailed understanding of the spatio-temporal information
of trajectories. The main problems of the previous work in terms of
technical details are missing context of original trajectories, ignorance
of spatial information and high computational complexity. Focusing on
these three problems involving trajectory perception, we can achieve
better results compared to previous work:

• The advantage of TULMGAT over GNNTUL and TULRN which
also treat a trajectory as a graph and apply graph neural networks,
lies in being able to process context information for trajectories of
any length, and the performance of both shows that retaining all
context in the original trajectory rather than sampling or filling
it is a correct perception of trajectories.

• The advantage of our work over TULAR is the effective mining of
the spatial information of trajectories, which proves that ignoring
the spatial information of trajectories is a lack of consideration,
and the effective use of the spatial information of trajectories is
the key to linking trajectory users.

• Compared too previous works, we achieve lower training time
by focusing on the spatial characteristics in trajectories. Sub-
sequently, we can compute the information of the trajectories
effectively and concisely in the node embedding phase by em-
bedding the node information into a more low-dimensional space
and by using parallel computation in the multi-headed atten-
tion computation, which makes the end-to-end deployment and
application of trajectory user links more quickly and easily.

.3. Model validity experiment

.3.1. Robustness study
In robustness study, we will test the performance of three TULMGAT

ariants on trajectories of different lengths. As we state in Section 1,
he main difference between Trajectory-User Linking and general clas-
ification tasks is that not only the number of trajectories per user
s different, but also the length of each trajectory, i.e. the amount of
nformation in single trajectory is different as well, which is similar
o image distortion in image classification tasks. Therefore testing the
obustness of the model against such noise that cannot be predicted in
dvance is required to apply the technique in reality.

We test the performance of variants of TULMGAT for ACC@1
n trajectories of different lengths and record the performance for
hich the number of trajectories is greater than 10. Moreover, we

ecord the standard deviation of each model to facilitate performance
omparisons.

As shown in Fig. 5, although the variants have essentially the
ame performance in Table 5, their accuracy varies significantly with
rajectories of different lengths. TULMGAT-O has a obvious perfor-
ance degradation compared to the other two models when facing very
10 
short trajectories, especially on Gowalla. Moreover, it may have serious
classification failures on all datasets when facing certain lengths. Com-
paring the standard deviations, TULMGAT-TH consistently has the most
stable performance, while TULMGAT-O tends to have poorer robust-
ness. Although its standard deviation is slightly lower thanTULMGAT-
T on Brightkite, this is because TULMGAT-T suddenly achieves bet-
ter classification accuracy for some trajectory lengths. Therefore, we
conclude that while multi-scale graph construction does not always
guarantee the best classification performance for Trajectory-User Link-
ing, TULMGAT can maintain better robustness across different trajec-
tory lengths by fusing information from multi-scale graphs, and its
classification confidence is often higher than the original TULGAT
(TULMGAT-O).

5.3.2. GNN study
In this section, we investigate different graph neural networks. TUL-

MGAT is based on the graph attention network(GAT) [18]. However,
other common graph neural networks include graph convolutional net-
works(GCN) [25] and graph sample and aggregate (GrpahSAGE) [17].
GCN optimizes the information of each source node based on learning
all neighboring nodes through a mapping function, and GrpahSAGE
updates the information of source nodes by sampling a fixed number of
nodes and learning an aggregation function. However, The GAT module
we apply computes self-attention scores among nodes to learn how to
autonomously perform aggregation of information from biased nodes.

In our GNN study, we replace the GAT module with GCN or Graph-
SAGE based on TULMGAT-TH and name them TUL-MGCN and TUL-
MSAGE. Furthermore, because the GAT in TULMGAT contains a two-
layer structure, we set up one or two layers of GCN and GprahSAGE for
models. Their main parameters are consistent with TULMGAT.

As shown in Fig. 6, TULMGAT outperforms the other models in
all metrics across all datasets, indicating that GAT is more capable of
learning the effective user mobility compared to other graph neural net-
works. We attribute this to the fact that trajectories as sparse subgraphs
in which the association between geographic locations is extremely
unique, and the self-attentive mechanism can effectively learn this
unique association. In contrast, GCN and GraphSAGE, especially their
one-layer versions, struggle to extract this uniqueness.

5.3.3. Single-scale experiment
In this section we analyze the single sampling scale, which means

that the whole network will only be experimented on one single 𝐶𝑂𝐺
transformed from one trajectory. To ensure the reasonableness of the
trajectory representation, three different sampling rates are chosen:
100% (no sampling) 50% (sample every two nodes) 33% (sample every
three nodes), and the corresponding models are called TULGAT-O,
TULGAT-T and TULGAT-TH.

As shown in Fig. 7, it is clear that TULGAT-O outperforms the other
models in terms of each metric, demonstrating that it is more effective
to represent the trajectory and learn spatio-temporal information in
the trajectory without sampling, which indicates the limitations of the
models that require a fixed number of nodes to be sampled in the
previous TUL work.
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Fig. 5. Performance of TULMGAT on trajectories with different number of nodes.
Fig. 6. GNN study.
.3.4. Ablation study
To evaluate the impact of each main component of TULMGAT, we

onducted experiments on several modules of TULMGAT. On the basis
f TULMGAT-TH, we design different variants for ablation study:

• TULMGAT w/o MH: We set the multi-headed attention in the
graph attention network to single-headed attention.
11 
• TULMGAT w/o GAT: We eliminate the graph attention network
module, and the initial node representations in the 𝐶𝑂𝐺𝑠 will be
fed directly to the global average pooling.

• TULMGAT w/o MS: Instead of sampling, we will feed the 𝐶𝑂𝐺

generated from a single complete trajectory alone into the model,
which is also called TULGAT.
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Fig. 7. Single-scale study.
• TULMGAT w/o BiLSTM: In trajectory embedding, we replace
BiLSTM with directional LSTM.

• TULMGAT w/o LSTM: We replace the BiLSTM with a simple fully
connected projection.

• TULMGAT w/o MS & LSTM: We discard both multi-scale trajec-
tory sampling and RNN models.

• TULMGAT w/o PG: We remove the edge relations of rule-based
pre-defined graph in Section 4.1.2 and Fig. 4, meaning the only
edge relations in trajectories are those provided by the order of
check-ins.

According to Fig. 8, TULMGAT w/o MH and TULMGAT w/o GAT
have the lowest performance in all metrics, illustrating that the graph
module plays the most important role in TULMGAT. Interestingly, GAT
with the single-headed attention mechanism cannot perform effective
node representation learning because TULMGAT w/o MH is far inferior
to TULMGAT w/o GAT in various metrics. Comparing TULMGAT with
TULMGAT w/o BiLSTM, TULMGAT w/o LSTM, TULMGAT w/o MS &
LSTM exhibit that BiLSTM in trajectory embedding module plays an
active role in this model and simpler trajectory embedding approach is
unacceptable. Observing the performance of TULMGAT and TULMGAT-
w/o MH, TULMGAT was generally superior to TULMGAT-w/o MH, but
the differences were not significant in each metric. According to the
results of TULMGAT w/o PG, we find a small decrease in model effec-
tiveness after removing the geographic information from pre-defined
graphs. We infer that pre-defined graphs provide useful geographic
information and alleviate data sparsity [27], but the network structure
is more important.

Overall, the ablation study shows that the graph attention network
module plays an irreplaceable role in TULMGAT, the RNN-based tra-
jectory embedding module and the rule-based pre-defined graph have
positive effects on mining human mobility patterns, and the multi-
scale trajectory sampling module brings limited improvement. In the
12 
next section, we will compare TULMGAT with TULGAT to investi-
gate the effectiveness of multi-scale trajectory sampling from a deeper
perspective.

5.3.5. Parameter analysis
In this section, we examine each important parameter in TULMGAT

and compare it with TULGAT in which the trajectory will generate a
single completed 𝐶𝑂𝐺 for subsequent modules rather than being sam-
pled at multiple scales to measure the effectiveness of the multi-scale
trajectory sampling module.

As shown in Fig. 9, we examine the performance of TULMGAT
and TULGAT on Gowalla ∣247∣ and Brightkite ∣223∣ with different
node embedding sizes. It can be intuitively seen that the larger the
node embedding dimension is, the better the model performance is.
However, when the node embedding size is larger than 128, the model
performance no longer significantly improves. Moreover, TULMGAT
generally outperforms TULGAT in all metrics.

Next, we investigate the effect of the dropout rate in the GAT
module on the performance of the model. As shown in Fig. 10, we
examined the dropout rate from 0 to 0.8 on both models. Obviously, as
the dropout rate increases, each metric of the model first rises slowly,
and when the dropout rate exceeds 0.25, the decreasing trend of the
model’s performance gradually accelerates. In addition, the metrics of
TULMGAT are generally better than those of TULGAT, and its perfor-
mance degradation rate is remarkably lower than that of TULGAT with
the increase in dropout rate.

The number of self-attention heads 𝐾 in Eq. (4) is an important pa-
rameter for the model TULMGAT. The performances of TULMGAT and
TULGAT by varying 𝐾 from 1 to 12 is reported in Fig. 11. Apparently,
the effect of the model gradually rises as the number of heads increases,
and after 𝐾 ≥ 10, the improvement in performance is no longer evident.
Moreover, the performance of TULGAT is unsurprisingly lower than
that of TULMGAT, and the performance of the model improves slowly
when the number of heads is small.
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Fig. 8. Ablation study.
Fig. 9. Performance of TULMGAT and TULGAT on various metrics with different node embedding sizes.
In summary, we analyze the influence of the main modules and
parameters of the model on the validity of the model. Moreover, we
compare TULMGAT with TULGAT on this basis. Through the analysis,
we can find that complete retention of trajectory information is impor-
tant by examining TULGAT in the single-scale experiment. However,
this does not mean that sampling the trajectory at a single-scale is the
most efficient. By comparing with TULMGAT at three sampling scales,
we find that the performance of TULGAT at a single sampling scale is
unstable, and it is more affected by various main parameters such as
dropout rate than TULMGAT. When the dropout rate increases or the
number of heads decreases, TULGAT performs poorly. This implies that
TULGAT is not robust but severely affected by the parameters, which
reflects the role of our multiscale sampling module in constructing the
13 
𝐶𝑂𝐺. TULMGAT is less affected by parameter changes, demonstrating
that it can perform more robustly in different datasets and parameters.

6. Conclusion and future work

In this paper, a novel model, namely TULMGAT, is developed
for the task TUL based on graph attention networks. Specifically, we
first construct a single trajectory into several check-in oriented graphs
according to different sampling scales and then update the nodes in
the trajectory with a masked multi-head self-attention graph neural
network to mine the spatio-temporal properties of user mobility in the
trajectory. Next, we propose global average pooling to converge the
trajectory representations from the graph module and apply the BiLSTM
model to learn the interactions of each dimension of the trajectory
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Fig. 10. Performance of TULMGAT and TULGAT on various metrics with different dropout rates.
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ectors. Finally, a linking module based on MLP and softmax functions
s employed to link trajectories to users. The adequate experiments
onducted on two public datasets demonstrate the superiority of our
roposed model.

While our work has made many improvements in Trajectory-User
inking, there are still many problems:

• Selection of grid granularity: Although Grid index does not re-
quire additional information or cumbersome pre-processing meth-
ods as POIs, grid granularity needs to be explored when dealing
with different datasets. Since our work only applies check-in
data from social platforms, the grid granularity is a uniform
one-thousandth of one degree of latitude and longitude, which
is approximately 100 m. However, in urban datasets such as
GeoLife [34], the granularity might be one meter.

• Inequity in the representation of spatial information: As
shown in Section 4.1.1, Grid Index in latitude and longitude
division is actually not fair, one degree of longitude constant
equals to 111 kilometers, but one degree of latitude equals to
111 × 𝑐𝑜𝑠𝜃 kilometers, where 𝜃 is the latitude. Moreover, Grid
Index may not be as effective as a non-linear representation of
POIs for representing spatial information in complex scenes, even
though it seems to work well on check-in data so far.

• Temporal information: We have not explored the temporal in-
formation of the trajectories in depth, and since we wish to deal
with the full information of trajectories with arbitrary length, we
have not been able to model the temporal information effectively

as in the previous work. The timing information of the trajectories f

14 
is only applied in our work to establish the edge relationships
of nodes, and RNN-based model in Trajectory embedding is just
utilized to optimize the representation of trajectories as well as
the relationships between multi-scale graphs.

• Spatial information: We think that our graph network is just a
preliminary work, and there is still much room for exploration of
trajectory which is a kind of graph, such as multi-graph construc-
tion under different granularity of grids in CULVAE [27], node en-
coding with timestamp information in time series prediction [35],
graph learning [36] and so on.

• Location semantics: A wider range of spatial tasks reveal the
importance of location semantics. Since a user’s trajectory is
more than pure spatial movement, each geographic location may
contain specific semantic information, such as administrative di-
visions or urban functional areas. Existing work on location se-
mantics [37] basically guarantees that the introduction of this
information will be beneficial and guides an exciting direction of
improvement in trajectory user linking.

In future, we will pay more attention to the efficient represen-
ation of temporal information in the trajectory since the temporal
rder in TULMGAT only provides directed edges in trajectories. We
ill explore the efficient encoding of timestamps or the construction
f spatio-temporal trajectory-oriented graphs based on periodic time
ntervals, and we will perform unsupervised learning to determine the
ransportation mode based on the speed of user movement for targeted
lassification of trajectories. Moreover, we will explore more effective
patio-temporal semantic information fusion mechanisms specifically

or trajectory or check-in data. Ultimately, we expect to achieve more
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Fig. 11. Performance of TULMGAT and TULGAT on various metrics with different 𝐾.
eneralized and more effective learning of human mobility patterns
n the complex urban traffic environment by studying spatio-temporal
ata such as trajectories.
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