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A B S T R A C T

Air quality spatiotemporal prediction can provide technical support for environmental governance and sus-
tainable city development. As a classic multi-source spatiotemporal data, effective multi-source information
fusion is key to achieving accurate air quality predictions. However, due to not fully fusing two pieces of in-
formation, classical deep learning models struggle to achieve satisfactory prediction results: (1) Multi-
granularity: each air monitoring station collects air quality data at different sampling intervals, which show
distinct time series patterns. (2) Spatiotemporal correlation: due to human activities and atmospheric diffusion,
there exist correlations between air quality data from different air monitoring stations, necessitating the
consideration of other air monitoring stations’ influences when modeling each air quality time series. In this
study, to achieve satisfactory prediction results, we propose the Multi-Granularity Spatiotemporal Fusion
Transformer, comprised of the residual de-redundant block, spatiotemporal attention block, and dynamic fusion
block. Specifically, the residual de-redundant block eliminates information redundancy between data with
different granularities and prevents the model from being misled by redundant information. The spatiotemporal
attention block captures the spatiotemporal correlation of air quality data and facilitates prediction modeling.
The dynamic fusion block evaluates the importance of data with different granularities and integrates the pre-
diction results. Experimental results demonstrate that the proposed model surpasses 11 baselines by 5% in
performance on three real-world datasets.

1. Introduction

With the emission of industrial exhaust gasses, the concentration of
pollutants in the atmosphere gradually increases, leading to respiratory-
related diseases and hindering the development and construction of
sustainable cities [1]. As one of the important means for sustainable
cities development, accurate air quality monitoring and prediction
technologies can provide important decision guidance for urban envi-
ronmental governance [2]. Currently, countries around the world
mainly use air monitoring stations to monitor air quality, aiming to
analyze data in a timely manner and take governance measures. As a
classic form of multi-source spatiotemporal data [3] and time series data
[4], effectively achieving multi-source information fusion has gradually
become an important technical support for air quality prediction tasks
[5]. Due to the complexity of human activities and atmospheric

diffusion, spatiotemporal air quality data presents complex patterns of
variation, greatly increasing the difficulty of data fusion and prediction
[6]. In recent years, based on the powerful nonlinear modeling and data
mining capabilities of deep learning, there has been rapid development
in the field of air quality prediction [7]. Classic deep learning frame-
works such as Recurrent Neural Networks (RNN) and Convolutional
Neural Networks (CNN) have been widely applied [8]. However, these
methods often do not fully utilize and fuse two key pieces of information
in air quality data (multi-granularity and spatiotemporal correlation),
resulting in limited forecasting performance [9]. Below, we will intro-
duce these two key pieces of information:

Multi-granularity: As shown in Fig. 1, air monitoring stations
typically collect multiple air quality data with varying granularities
based on different sampling intervals [10]. Coarse-grained data in-
dicates air quality data with daily sampling intervals, primarily
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reflecting overall trends and seasonality [11]. Fine-grained data refers to
air quality data collected at hourly intervals, highlighting local details
[12]. Utilizing multi-granularity data can provide the model with a
broader range of information, ultimately enhancing the accuracy of
predictions [13].

Spatiotemporal correlation: Due to the impact of atmospheric
diffusion, human activities, and other factors, there are often mutual
influences between air quality data from various air monitoring stations
[14]. This necessitates the consideration of Air quality data from other
sites when modeling each air quality data [15]. Therefore, if the model
can successfully capture the spatiotemporal correlation among air
quality data from different sites, it can acquire crucial information and
obtain more accurate prediction results [16].
If the two important information can be fully utilized and fused, the

model can extract more valuable information and enhance its perfor-
mance. However, there are still some technical challenges that must be
addressed: (1) While multi-granularity features can offer additional in-
formation to the model, there is often redundancy between coarse-
grained and fine-grained data. As shown in Fig. 1, coarse-grained data
is a new form of data processed from fine-grained data and they contain
similar global patterns. If redundancy is not eliminated, the model may
overly focus on these global patterns, leading to a decrease in predictive
performance. (2) The spatial correlation of Air quality data is highly
dynamic at both local and global levels, influenced by factors like at-
mospheric diffusion and human activities. This complexity makes it
challenging for simple methods based on correlation coefficients and
distances to accurately capture spatial correlations between data
collected from different sites. Therefore, it is crucial to develop amethod
that can deeply analyze the spatiotemporal correlation among different
air quality datasets. (3) In multi-step prediction scenarios, the modeling
effects of data with different granularities vary for each time step due to
differences in information content. Combining multi-granularity data
using weighted summation often limits the predictive power of the
model. Therefore, it is essential for the model to analyze the impact of
data with different granularities on multi-step prediction accurately and
assign suitable weights accordingly.
To address the aforementioned three technical challenges, we pro-

pose three blocks: the Residual De-redundant (RD) block, the Spatio-
temporal Attention (STA) block, and the Dynamic Fusion (DF) block.
These blocks aim to resolve the current issues from the following
perspectives:

RD block: Eliminating the redundant information between coarse-
grained and fine-grained data can prevent the model from being
misled by redundant information and impacting the results [17].

However, how can we effectively eliminate this redundant information?
Given that time series data is a unique sequence with historical inertia,
the correlation between coarse and fine granularity is most significant
within the same time frame [18]. Therefore, we design the RD block,
which utilizes piecewise sampling and the multilayer perceptron to
establish the correspondence of redundant information across different
granularities. Once the correspondence of redundant information is
established, the RD block leverages residual connections to eliminate
this redundancy.

STA block: Compared with CNN, RNN and other methods, the
attention mechanism can effectively capture temporal information and
spatial correlation from a global perspective [19]. Considering the
highly dynamic spatiotemporal correlation of air quality data, this paper
proposes the spatiotemporal attention block, designed to explore the air
quality data in terms of its spatiotemporal aspects. Within this block, we
propose spatial attention and temporal attention, individually mining
spatial correlation and temporal information from the original data.
Next, to fully integrate spatiotemporal information, we use the idea of
the parallel modeling strategy and incorporate cross-attention to
combine the tensors derived from spatial attention and temporal
attention. Contrasted with the approach of stacking multiple layers, the
parallel modeling strategy allows the model to extract information more
efficiently [20]. Through these procedures, the STA block can effectively
mine and integrate the spatial-temporal correlation of air quality data.

DF block: As coarse-grained data and fine-grained data contain
different information, they have varying effects on different prediction
time steps [21]. Taking this into account, we employ the concept of
piecewise ensemble to achieve the dynamic fusion of prediction results.
[22]. To implement the piecewise ensemble based on the varying
granularities of data, this paper introduces the dynamic fusion block.
This block utilizes the attention mechanism to assess the significance of
different granularities across diverse prediction time steps. This allows
the model to assign distinct weights at different time steps, ultimately
enhancing prediction performance.
Based on the above three blocks, we propose the Multi-Granularity

Spatiotemporal Fusion Transformer (MGSFformer), which leverages
the two essential information (multi-granularity and spatiotemporal
correlation) of air quality data to enhance high-precision air quality
spatiotemporal prediction. In conclusion, the primary contributions of
this paper can be outlined as follows:

• We propose the Multi-Granularity Spatiotemporal Fusion Trans-
former for air quality spatiotemporal prediction. MGSFformer can

Fig. 1. The air quality index data under different granularity.
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effectively utilize and fuse the multi-granularity and spatiotemporal
correlation of air quality data.

• We design three blocks to address three challenges in modeling air
quality spatiotemporal data. Firstly, the RD block is designed to
eliminate information redundancy among multi-granularity fea-
tures. Additionally, the STA block is proposed to extract spatiotem-
poral correlations among different air quality data for
spatiotemporal prediction. Finally, the DF block is designed to
analyze the impact of various granularities on multi-step prediction
effectively and generate the final prediction results.

• To show the performance of MGSFformer, we conduct comparative
experiments on three real-world datasets. All experimental results
indicate that the proposed model can effectively outperform 8
different state-of-the-art (SOTA) baselines.

The remaining sections of this paper are organized as follows: Sec-
tion 2 shows the existing related work. Section 3 presents the definition
of the problem as well as the framework of the proposed MGSFformer.
Section 4 reports the main experimental results. Section 5 concludes this
paper and gives future works.

2. Related works

In this section, we discuss related works from three aspects: classic
deep learning methods, multi-granularity modeling methods and
spatiotemporal modeling methods.

2.1. Classic deep learning methods

In air quality spatiotemporal prediction, deep learning-based
methods can enhance the model’s feature analysis ability by stacking
multiple hidden layers [23]. As one of the mainstream air quality pre-
diction methods, RNNmainly adopts the sequential modeling concept to
achieve accurate time series prediction. Compared to traditional
methods, RNN can yield certain results [24]. The long short-term
memory network (LSTM) [25] and the gated recurrent unit (GRU)
[26], as the main variants of RNN, utilize the gated structure to enhance
the model’s training effectiveness and comprehensively capture time
series dependencies [27]. Apart from RNN-based frameworks,
CNN-based models have also demonstrated excellent performance. The
temporal convolutional network (TCN) utilizes dilated convolution for
sequence modeling and achieves similar results to RNN [28]. Although
traditional deep learning models have achieved certain successes, they
often fail to the deep information of multivariate time series in both
temporal and among variables, which limits their effectiveness.
To fully exploit the deep information of multivariate time series in

both temporal and among variables, the Transformer [29] and the
Spatiotemporal Graph Neural Network (STGNN) [30] have been widely
adopted in recent years. The multi-resolution interactive transformer
[31] combines multi-resolutionmodeling with the attentionmechanism,
achieving impressive performance in time series forecasting. Further-
more, the spatiotemporal transformer [32] successfully predicts air
quality by exploring the spatiotemporal dependencies between sites.
Shao et al. [33] combined adaptive graph convolution and RNN to
effectively improve the accuracy of spatiotemporal prediction models. Ji
et al. [34] used the dynamic graph learning to optimize the performance
of STGNN in the field of spatiotemporal prediction. Song et al. [35]
designed a variety of different graph structures to improve the predic-
tion of STGNN. Xu et al. [36] proposed the generic dynamic graph
convolutional network to realize high-precision spatiotemporal infor-
mation fusion and time series prediction. While above deep learning
methods have shown promising results, they fail to effectively utilize
and fuse all air quality data information (the multi-granularity and
spatiotemporal correlation), limiting their modeling efficacy [37].

2.2. Multi-granularity modeling methods

At present, several scholars have proposed ensemble methods [38]
and concatenation methods [39] to incorporate multi-granularity in-
formation. Liu et al. [40] utilized support vector machine (SVM) and
long short-term memory network (LSTM) to model coarse-grained and
fine-grained air quality data, respectively. They employed the
non-dominated sorting genetic algorithm II (NSGA-II) to combine
models with varying granularities, resulting in a 5% performance
improvement. Teng et al. [41] applied LSTM and attention mechanisms
to analyze air quality data with different granularities. Subsequently,
they utilized a weighted summation approach to fuse the ensemble re-
sults. Ji et al. [42] utilized LSTM and Extreme learning machine (ELM)
for coarse-grained and fine-grained modeling, respectively. The pre-
diction outcomes with different granularities were integrated using the
whale optimization algorithm (WOA). Yu et al. [43] used hierarchical
structure to improve the ability of neural network to mine
multi-granularity information of time series. Compared with
single-grain model, the introduction of multi-grain information can
effectively improve the prediction accuracy. Wang et al. [44] employed
the concatenation method and deep learning to achieve the fusion of
multi-granularity information and demonstrate the importance of
multi-granularity through experimentation. Despite the effectiveness of
these frameworks, the aforementioned methods often overlook two is-
sues: (1) Information redundancy exists between air quality data with
different granularities due to the nature of the data. (2) Data with
different granularities contain distinct information, contributing differ-
ently at various prediction stages. In conclusion, existing methods do not
fully leverage the multi-granularity information available, which limits
their performance.

2.3. Spatiotemporal modeling methods

Currently, some researchers utilize other sites that are highly
correlated with the target site as auxiliary inputs to achieve air quality
spatiotemporal prediction [45]. Mi et al. [46] utilized the Pearson cor-
relation coefficient to identify the most significant auxiliary sites for the
target site. The experiments demonstrate that incorporating auxiliary
sites can enhance the performance of the target site by 5%. Liu et al. [47]
employed a clustering approach to categorize monitoring stations into
multiple groups. Stations within the same group were then used as
auxiliary inputs for the target stations. Apart from these techniques,
spatiotemporal graph neural networks have also been employed for air
quality spatiotemporal prediction [48]. Liu et al. [28] utilized the graph
convolutional network (GCN) and reinforcement learning (RL) to
construct a air quality spatiotemporal prediction model. Tan et al. [49]
employed the graph attention network (GAT) to identify spatial corre-
lations among air quality levels at different sites and developed a
high-performing prediction model. Liu et al. [50] used Gaussian distri-
bution and attention mechanisms to optimize the performance of graph
convolution, achieving good results in spatiotemporal prediction.
Ahmed et al. [51] realized high-precision multivariate time series pre-
diction based on distance information and graph convolutional net-
works. Experimental results prove the effectiveness of spatiotemporal
modeling. Generally, existing spatiotemporal forecasting methods pri-
marily rely on correlation coefficients and distances to analyze spatio-
temporal correlations [52]. Nevertheless, as the number and distances
between air monitoring stations increase, these methods often encounter
challenges in accurately capturing spatial correlations [53].

3. Methodology

3.1. Preliminaries

The air quality spatiotemporal prediction task can be defined as time
series prediction and multi-granularity modeling. A brief introduction to
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these two tasks is provided below:
Time series prediction [54]: The spatiotemporal prediction of air

quality proposed in this paper can be defined as a time series prediction
technique [55]. For N different air monitoring stations, given input
features for X = [x1, x2, …, xH], the model can get prediction results Y =

[Y1, Y2, …, YL]. And H represents the length of the looking back time
window. L stands for the step size of the prediction. The dimensions of X
and Y are N*H and N*L respectively.

Multi-granularity modeling [56]: Compared with traditional time
series modeling, the main difference of multi-granularity modeling is the
input features of the model. The input features of the model are trans-
formed to X= [X1, X2, …, Xm]. X1 is the coarsest granularity, and its
dimension is N*H1. Xm is the finest granularity, and its dimension is
N*Hm. The output of the model is the most coarse-grained Air quality for
the next L time steps.

3.2. Framework of MGSFformer

Fig. 2 illustrates the main framework of the proposed air quality
spatiotemporal prediction model, which consists of three main blocks:
the residual de-redundant block, spatiotemporal attention block, and
dynamic fusion block. The main modeling steps of the MGSFformer are
outlined as follows:

Step 1: The data with different granularities are individually input
into the corresponding RD blocks. The RD block comprises two main
components: information embedding and residual connection. In-
formation embedding establishes the correspondence of redundant
information positions in data with different granularities and con-
verts them into the same dimension. The residual connection elimi-
nates redundant information. Section 3.2 elaborates on the specific
modeling process of the RD block.

Fig. 2. The overall framework of the proposed model. The input of the model is air quality data with different granularities. The output of the model is the air quality
data at the coarsest granularity. (a) The specific structure of the residual de-redundant block. (b) The specific structure of the spatiotemporal attention block. (c) The
specific structure of the dynamic fusion block.
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Step 2: The data processed by the RD block is then transmitted to the
STA block. The STA block employs temporal attention, spatial
attention, and cross-attention to conduct spatiotemporal modeling of
air quality data across different granularities, resulting in prediction
results. Section 3.3 provides a detailed explanation of the imple-
mentation process of the STA block.
Step 3: The prediction results of models with varying granularities
are directed to the DF block. By assessing the significance of different
granularities in multi-step prediction, this block effectively accom-
plishes dynamic result fusion to generate the final prediction results.
The essential aspects of the DF block are introduced in Section 3.4.

3.3. Residual de-redundant block

The main function of the RD block is to embed information while
eliminating redundant information between multi-granularity data.
Compared to natural language data, the time series is a special sequence
format, which makes the coarse-grained data and fine-grained data in
the corresponding time period contain the strongest correlation of in-
formation [18]. The residual de-redundant block is proposed based on
the above characteristics, which contains three important functions:
corresponding to the redundant information positions between multiple
granularities, matching the dimensions of features with different gran-
ularities, and eliminating of redundant information. The specific
modeling steps are given as follows:

Step 1: The input feature of each RD block isXm ∈ RN∗Hm .N represents
the number of series and Hm represents the length of the look-back
window. Hm is different for each granularity. The first modeling
step is to realize the correspondence of redundant information lo-
cations between coarse-grained and fine-grained by the piecewise
sampling method. For the coarsest granularity, the dimensions of
X1 ∈ RN∗H1 are transformed as follows:

N ∗ H1→N ∗ C ∗ 1 (1)

where, the size of H1 and C are equal, that is, the dimension of X1 is
transformed from two to three dimensions.

Step 2: Then, based on the dimension of the coarsest granularity, all
the fine granularities are transformed into 3D tensors by piecewise
sampling. After transformation, the correspondence of redundant
information positions between data with different granularities can
be realized. The conversion of fine-grained data is shown as follows:

N ∗ Hm→N ∗ C ∗
Hm

C
(2)

where, the dimension C of all fine-grained Xm is equal to the dimension C
of the coarsest grainedX1. For the transformedXm, the composition of the
jth subsequence Xj

m obtained in the piecewise sampling is given as
follows:

Xj
m =

[
x1+(j− 1)∗c, x2+(j− 1)∗c, x3+(j− 1)∗c, ..., xj∗c

]
(3)

Step 3: In the previous step, the fine-grained input feature Xm is
transformed by the piecewise sampling method. Before residual
modeling, it is necessary to ensure that the dimensions of different
Xm are uniform. To unify the dimensions of these features, MLP is
used to transform the dimension of Xm from N ∗ C ∗ Hm

C to N ∗C ∗Hʹ.
The basic formula is given as follows:

Fm = FC(ReLU(FC(Xm))) (4)

where, FC(⋅) is the fully connected layer. ReLU(⋅) stands for the activa-
tion function

Step 4: The above steps complete the information embedding. The
feature tensor Fm ∈ RN∗C∗Hʹ is obtained for each granularity. Next,
redundant information of Fm ∈ RN∗C∗Hʹ needs to be eliminated before
spatiotemporal modeling.
Step 5: Piecewise sampling effectively matches the positions of
redundant information across data of different granularities. To fully
eliminate the redundant information between the fine-grained data
and the coarse-grained data, this paper uses the residual connection.
The basic formula for the residual connection is given below:
⎧
⎨

⎩

Im = Fm,m = 1
Im = Fm − Gm− 1,m > 1
Gm = COPY(Im)

(5)

where, Im ∈ RN∗C∗Hʹ represents the input of the STA block. Fm ∈ RN∗C∗Hʹ

represents the input features after preliminary processing through the
information embedding. Gm− 1 ∈ RN∗C∗Hʹ represents the previous coarse-
grained information. COPY(.) means that we use the processed Im ∈

RN∗C∗Hʹ as Gm ∈ RN∗C∗Hʹ and pass it to the m + 1 RD blcok.

Step 6: After the above steps, we get Im ∈ RN∗C∗Hʹ and Gm ∈ RN∗C∗Hʹ.
Im ∈ RN∗C∗Hʹ is transmitted to STA block to realize air quality
spatiotemporal prediction. The Gm ∈ RN∗C∗Hʹ is transmitted to the
next RD block to eliminate redundant information of finer grained
data.

3.4. Spatiotemporal attention block

The STA block is used to extract key information from the feature
tensor Im ∈ RN∗C∗Hʹ obtained by the RD block, which contains the most
important information at the current granularity, in order to achieve
high-precision prediction. The main structure of the STA block includes
temporal attention, spatial attention, cross attention and MLP. The
temporal attention is used tomine the temporal correlation of the data at
each site. The spatial attention is used to mine the spatial correlation
between the air quality data from different sites. The cross attention is
used to fuse temporal and spatial information. The spatiotemporal
prediction results are obtained through the MLP layer. The main
modeling steps of the STA block are given as follows:

Step 1: The temporal attention is used to mine the temporal infor-
mation of the feature tensor Im ∈ RN∗C∗Hʹ and obtains a new feature
tensor Item ∈ RN∗C∗Hʹ. The specific formula is shown as follows:
⎧
⎪⎪⎨

⎪⎪⎩

Q = Wte
QIm

K = Wte
K Im

V = Wte
V Im

(6)

Item = FLN
(
softmax

(
Q ∗KT)V+ Im

)
(7)

where, W represents the weight coefficient. FLN (⋅) represents the layer
normalization. KTis the transpose of K.
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Step 2: The spatial attention is used to mine the spatial correlation
between air quality data from N different monitoring stations in the
feature tensor Im ∈ RN∗C∗Hʹ. Then, a new feature tensor Ism ∈ RN∗C∗Hʹ is
obtained according to the following formula:
⎧
⎪⎪⎨

⎪⎪⎩

Q = Ws
QIm

K = Ws
KIm

V = Ws
VIm

(8)

Ism = softmax
(
Q ∗KT)V (9)

Temporal attention primarily models the dimension C of
Im ∈ RN∗C∗Hʹ, that is, the contextual association. Spatial attention mainly
models the dimension N of Im ∈ RN∗C∗Hʹ, that is, the association between
different time series.

Step 3: After mining the temporal information and spatial correlation
of Air quality data at different monitoring stations, this paper uses
cross attention to fuse the Item ∈ RN∗C∗Hʹ and Ism ∈ RN∗C∗Hʹ, and realizes
the fusion of spatiotemporal information. Istm ∈ RN∗C∗Hʹ is obtained
based on the following formulas:
⎧
⎪⎪⎨

⎪⎪⎩

Q = Wca
Q I

s
m

K = Wca
K I

te
m

V = Wca
V I

te
m

(10)

Istm = softmax
(
Q ∗KT)V (11)

In cross-attention, we use the feature vector Ism obtained from spatial
attention as the Query (Q), and the feature vector obtained from tem-
poral attention Item as the Key (K) and Value (V). Through this way, the
feature vector Item can query the most critical information from feature
vector Ism and integrate it, avoiding information redundancy caused by
direct adding.

Step 4: Before finally realizing the prediction throughMLP, the three-
dimensional tensor Istm ∈ RN∗C∗Hʹ needs to be transformed into two-
dimensional tensor Om ∈ RN∗Lʹ by the following formula:

Istm ∈ RN∗C∗Hʹ→Om ∈ RN∗Lʹ (12)

Lʹ = C ∗ Hʹ (13)

Istmis transformed into Omby reshaping.

Step 5: Finally, the Air quality spatiotemporal prediction is realized
based on the MLP layer and the prediction results Ym ∈ RN∗L are
obtained.

Ym = ReLU(FC(Om)) (14)

where, Ym ∈ RN∗L represents the prediction of the model at the mth
granularity. In this paper, each granularity of the model can obtain the
corresponding prediction value Ym ∈ RN∗L. After that, by effectively
fusing these prediction values, the DF blocks can obtain the final pre-
diction results Ypre ∈ RN∗L.

3.5. Dynamic fusion block

Through the above modeling process, the corresponding prediction
results Ym ∈ RN∗L of multiple STA block with different granularities are
obtained. To fully fuse these prediction results and obtain the optimal
multi-step prediction results Ypre ∈ RN∗L, an attention-based dynamic
fusion block is proposed. The modeling steps in this block are given as
follows:

Step 1: Based on the STA block, the mth granularity model obtained
the prediction result

Ym = [ym1, ym2, ..., ymL].

where, ymL represents the prediction result of themth granularity at the L
step.

Step 2: For the first prediction time step, the prediction result for all
granularities is Ypre1 =

[
y11,y21, ...,ym1

]
. The attention distribution is

defined by the following formula:

α1 = softmax
(
Ypre1

)
= [α11,α21, ...,αm1] (15)

Step 3: The prediction result ypre1 is obtained by weighted summation
of α and y based on the following formula:

ypre1 =
∑m

t=1
(αt1 ∗ yt1) (16)

Step 4: For each subsequent time step, the above method is used to
fuse the results of all granularities and obtain the final air quality
multi-step prediction results Ypre ∈ RN∗L.

4. Experiments

4.1. Experimental design

Dataset: To fully compare and analyze the performance of different
models, experiments are conducted using three real-world datasets from
China. The basic statistics of these datasets are shown in Table 1. The
spatial distribution of these data is shown in Fig. 3. As the most
important indicator in these datasets, this paper mainly compared and
analyzed the Air Quality Index (AQI). In addition, to further demon-
strate the model’s adaptability, we also compared and analyzed four
important air pollutants (PM2.5, PM10, SO2, NO2) [57]. All datasets can
be found at the following link: https://quotsoft.net/air/.
A brief description of these datasets is shown below:

• Beijing sites: This dataset is air quality data from 35 air monitoring
stations in Beijing, China. The time range of the dataset is from 2015
to 2021. Granularity timestamps for data include 1 day, 12 h, 6 h, 3
h, and 1 hour.

• China cities: This dataset consists of air quality data collected from
350 cities in China. The time range of the dataset is from 2015 to

Table 1
Basic statistics of all datasets.

Datasets Beijing sites China cities China sites

Number of time series 35 350 1200
Time steps 59,712 59,688 59,720
Initial granularity 1 h 1 h 1 h
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2021. Granularity timestamps for data include one day, 12 h, 6 h, 3 h,
and 1 hour.

• China sites: This dataset consists of air quality data collected from
1200 sites in China. The time range of the dataset is from 2015 to
2021. Granularity timestamps for data include one day, 12 h, 6 h, 3 h,
and 1 hour.

Baselines. To demonstrate the performance of the proposed model,
this paper selects baselines from the following six aspects: statistics
model (VAR [58]), RNN-based networks (GRU [27] and LSTNet [59]),
CNN-based model (TimesNet [60] and SciNet [61]), GNN-based model
(MegaCRN [62] and AGCRN [63]), multi-granularity-based models
(TimeMixer [44] and PatchFormer [64]) and Transformer-based models
(DSformer [65] and Airformer [66]). A basic introduction to these
baselines is shown below:

• VAR: Vector autoregression is a classical multivariate time series
prediction model based on statistics.

• GRU: As a classical RNN variant, GRU can better model the context of
air quality time series.

• LSTNet: It combines LSTM and attention mechanisms to effectively
optimize the prediction performance.

• SciNet: The model uses hierarchical structure and sample convolu-
tion to improve the ability of the model to mine time series.

• TimesNet: It uses frequency domain conversion and convolutional
network to mine the time information of data.

• AGCRN: It introduces adaptive graph learning to improve the ability
of models to model spatiotemporal associations.

• MegaCRN: It combines memory bank and adaptive graph learning to
improve the ability of the model to mine temporal and spatial
correlations.

• PatchFormer: It employs multi-scale attention and integrates data
from different patches to establish correlation among features with
different scales.

• TimeMixer: It utilizes a fully MLP-based architecture with Past-
Decomposable-Mixing (PDM) and Future-Multipredictor-Mixing
(FMM) blocks, aiming to fully leverage the multi-scale information
of time series.

• DSformer: It introduces the double sampling block and attention
mechanism to effectively mine temporal and spatial information of
data.

• Airformer: It proposes the Dartboard Spatial attention and Causal
Temporal attention to mine the spatiotemporal correlation of air
quality data.

Setting. The main hyperparameters of the proposed model are
shown in Table 2. Besides, to ensure a comprehensive and unbiased

comparison, we structured the experiment as follows: (1) The three
datasets were segmented into training, validation, and test sets in a 6:2:2
ratio. (2) To align with the modeling configurations of SciNet, TimesNet,
and other baselines, this paper employed the z-score standardized
method [67] uniformly for preprocessing the raw air quality data. (3) In
the proposed model, we utilized a 7-day window of historical observa-
tions as input features. The dimensions of features, varying in granu-
larity, differ (the coarsest granularity has a history length of 7, while the
finest granularity has a history length of 168). In addition, we further
evaluated the influence of the length of historical observations on the
experimental results in Section 4.7. The model’s output comprises the
air quality for all air monitoring stations for the subsequent 7 days. (4)
For the other baseline models, we generated prediction results based on
multi-granularity features and single-granularity features separately.
The optimal results were then compared with those of the proposed
model. (5) For fair comparison, all baselines uniformly use raster search
[68] to optimize their hyperparameters. (6) The code can be found at the
following link: https://github.com/ChengqingYu/MGSFformer.

Evaluation index. It is the core technology to evaluate the overall
performance of all models adopted in this paper. Three classic time-
series evaluation indexes, which include MAE (Mean Absolute Error)
[70], MSE (Mean Square Error) [71], and CORR (R Squared index) [72],
were used to analyze MGSFformer and other baselines. The core calcu-
lation formulas of these evaluation indexes are shown as follows:

MAE =

(
∑n

T=1

⃒
⃒Ytrue(T) − Ypre(T)

⃒
⃒

)/

n (17)

MSE =

(
∑n

T=1

[
Ytrue(T) − Ypre(T)

]2
)/n (18)

Fig. 3. Spatial distribution of different air monitoring stations in all datasets. The red dots represent the locations of the air monitoring stations.

Table 2
The main hyperparameters of the proposed model.

Config Values

optimizer Adam [69]
learning rate 0.0002
number of multi-head attention 2
dropout 0.3
dimensions H’ after matching 32
learning rate schedule MultiStepLR
milestone [1,25,50,75]
gamme 0.5
batch size 32
epoch 100
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CORR = 1 −

(
∑n

T=1

⃒
⃒Ytrue(T) − Ypre(T)

⃒
⃒2
)/(

∑n

T=1
|Ytrue(T) − Yave|

2

)

(19)

where Ytrue(T) represents actual air quality data. Ypre(T) represents the
air quality data calculated by the proposed model. Yaveis the average
power of the power series. n represents the sample size.

4.2. Main results

To prove the advancement of the proposed model in air quality
spatiotemporal prediction, this section compares the proposed model
with 11 existing baselines. Table 3 shows the efficiency of different
models. Table 4 shows the experimental results of all models on AQI
datasets. The Horizon represents the prediction result of the corre-
sponding time step, and the Average represents the average prediction
result of the multi-step prediction. In addition to the air quality index,
Table 5 further compares the predictive performance of MGSFformer
and several baselines on four types of air pollution data (PM2.5, PM10,
SO2, NO2).
As shown in Tables 4 and 5, the proposed model demonstrates su-

perior performance across all datasets, providing strong evidence of its
effectiveness. Based on the experimental results, the following conclu-
sions can be drawn:

(1) The statistics model, RNN-based models, and CNN-based models
exhibit subpar prediction performance due to their failure to fully
leverage two crucial data patterns (multi-granularity and spatial
correlation).

(2) GNN-based models excel in mining spatial correlation and tem-
poral information, ensuring their performance. However, they do
not fully capitalize on multi-granularity information, thereby
limiting their efficacy.

(3) Multi-granularity-based models can achieve decent predictive
performance. However, on one hand, they overlook the redun-
dant information among multi-granularity data, and on the other
hand, they fail to fully model spatial associations, which limits
their prediction effectiveness.

(4) Transformer-based models effectively utilize both multi-
granularity information and spatial correlation. Nevertheless,
existing Transformer-based models struggle to eliminate redun-
dant information and achieve seamless information fusion, ulti-
mately impacting their performance.

(5) In comparison to other classical models and the state-of-the-art
models, the proposed MGSFformer achieves the best results.
The RD block eliminates redundant information from data with
varying granularities. The STA block integrates temporal atten-
tion, spatial attention, and cross-attention to effectively facilitate
air quality spatiotemporal prediction. Lastly, through the DF
block, the model assigns weights to different granularities based
on their contributions at distinct prediction steps. Consequently,
the MGSFformer holds significant practical value.

4.3. Performance evaluation of different components

To fully verify the importance of each block in the proposed network,
component replacement experiments are taken in this section. This
paper replaces the key components from the following three perspec-
tives: (1) Pro-GRU: it stands for replacing the information embedding in
the RD block with GRU. (2) Pro-GWO and Pro-RL: we use the gray wolf
optimization algorithm and reinforcement learning to replace the DF
block, respectively. (3) Pro-MLP: it stands for replacing the STA block
with the MLP. (4) Pro-SA: it represents that STA blocks achieve spatio-
temporal modeling by stacking temporal attention and spatial attention.
Table 6 presents the error evaluation indices for several methods and

MGSFformer. Based on the results, the following conclusions can be
drawn:

(1) The proposed information embedding method outperforms GRU-
based information embedding in achieving better results. This
improvement is attributed to GRU’s limited capability in multi-
step prediction and spatiotemporal modeling.

(2) The proposed attention-based DF block surpasses result fusion
based on reinforcement learning and multi-objective optimiza-
tion algorithms, delivering an average performance improvement
of over 5%. This enhancement is due to the attention-based DF
block’s ability to evaluate the significance of different granular-
ities at various prediction steps, thereby optimizing result fusion.

(3) The proposed STA block outperforms the MLP-based modeling
component in establishing a more precise air quality prediction
model. This superiority stems from the STA block’s three atten-
tion mechanisms, which effectively extract and integrate tem-
poral information and spatial correlation. Consequently, the
proposed model can analyze spatiotemporal correlation more
accurately than MLP, ensuring its superior performance.

(4) Compared with stacking temporal attention and spatial attention,
the STA block based on the parallel modeling structure can ach-
ieve better experimental results. The main reason is that the
parallel modeling structure enhances the ability of the model to
mine key characteristics from the raw data, which guarantees the
forecasting effect of the model.

4.4. Ablation experiments

To demonstrate the importance of several components, this paper
also employs ablation experiments, which were performed from the
following four aspects: (1) w/o RE: To demonstrate the importance of
removing information redundancy, we remove the residual connection
in the RD block. (2) w/o DF: To demonstrate the importance of the
proposed DF block, we remove the result fusion block and use linear
weighting as the alternative. (3)w/o IE: To prove the importance of our
proposed information embedding method, we replace it with a linear
layer. (4) w/o RD: We remove the RD block to prove the importance of
input information processing.
Table 7 illustrates the results of the ablation experiments. The

experimental findings indicate a significant degradation in the model’s
performance upon the removal of components. Based on these results,
the following conclusions can be drawn:

(1) The results of w/o RE indicate that the residual connection
effectively eliminates information redundancy between data with
different granularities, enhancing the model’s modeling
capability.

(2) The results of w/o DF highlight the importance of dynamic result
fusion. Attention, as opposed to linear weighting, accurately as-
sesses the significance of different granularities at different pre-
diction steps, thereby optimizing overall prediction accuracy.

(3) The experimental results of w/o IE reveal that direct dimension
transformation and residual connection on original features fail

Table 3
Efficiency of different models. The result is the average training time for each
epoch.

Method Datasets

Beijing sites China cities China sites

MGSFformer 24.67 74.16 189.34
Airformer [66] 31.84 89.84 192.56
DSformer [65] 20.75 64.31 174.83
MegaCRN [62] 34.86 93.17 231.49
AGCRN [63] 38.55 101.29 273.76
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to effectively eliminate crucial redundant information, limiting
the model’s prediction ability.

(4) Complete removal of the RD block results in a model equivalent
to a conventional multi-granularity ensemble learning model,
leading to a substantial increase in prediction error. This outcome
is attributed to the removal of essential components associated
with redundant information elimination, impacting the model’s

analytical capability due to the presence of redundant informa-
tion across multiple granularities.

4.5. Performance evaluation of different granularities

Considering that data with different granularities have different
functions, this section evaluates the effect of fine-grained and coarse-
grained data in the following ways: (1) The proposed model uses the

Table 4
Performance comparison results of all baselines and the proposed model on AQI datasets (The best results are shown in bold. An upward arrow represents accuracy,
while a downward arrow represents error.).

Dataset Model Horizon 1 Horizon 4 Horizon 7 Average

MSE↓ MAE↓ CORR↑ MSE↓ MAE↓ CORR↑ MSE↓ MAE↓ CORR↑ MSE↓ MAE↓ CORR↑

Beijing sites VAR [58] 0.2437 0.3845 0.814 0.7044 0.6795 0.504 0.8156 0.7025 0.454 0.6684 0.6252 0.528
GRU [27] 0.2279 0.3618 0.836 0.6495 0.6154 0.553 0.7638 0.6817 0.497 0.5294 0.5630 0.606
LSTNet [59] 0.2265 0.3566 0.847 0.5771 0.5987 0.566 0.7581 0.6823 0.482 0.5129 0.5559 0.618
SciNet [61] 0.2169 0.3464 0.854 0.5028 0.5714 0.592 0.5755 0.6356 0.533 0.4640 0.5312 0.632
TimesNet [60] 0.2151 0.3453 0.859 0.4917 0.5858 0.587 0.5651 0.6394 0.527 0.4429 0.5302 0.645
AGCRN [63] 0.2099 0.3168 0.874 0.4622 0.5065 0.653 0.5022 0.5781 0.589 0.4037 0.4705 0.724
MegaCRN [62] 0.2093 0.3165 0.878 0.4503 0.4947 0.679 0.5079 0.5774 0.591 0.4075 0.4675 0.729
PatchFormer [64] 0.1956 0.3094 0.886 0.4356 0.4916 0.684 0.4915 0.5648 0.604 0.3987 0.4602 0.731
TimeMixer [44] 0.1934 0.3052 0.897 0.4301 0.4873 0.709 0.4897 0.5622 0.602 0.3965 0.4591 0.735
DSformer [65] 0.1894 0.3015 0.908 0.4138 0.4719 0.721 0.4812 0.5593 0.611 0.3826 0.4577 0.742
Airformer [66] 0.1859 0.2913 0.916 0.4215 0.4826 0.715 0.4771 0.5519 0.616 0.3803 0.4529 0.753
MGSFformer 0.1767 0.2788 0.932 0.3975 0.4536 0.746 0.4514 0.5311 0.625 0.3542 0.4246 0.775

China cities VAR [58] 0.5136 0.4618 0.725 0.7543 0.6072 0.534 0.7796 0.6184 0.512 0.7135 0.5829 0.572
GRU [27] 0.4912 0.4474 0.749 0.7241 0.5721 0.597 0.7425 0.5913 0.559 0.6658 0.5401 0.623
LSTNet [59] 0.4817 0.4436 0.755 0.6978 0.5568 0.611 0.7432 0.5929 0.548 0.6541 0.5342 0.637
SciNet [61] 0.4899 0.4415 0.764 0.6584 0.5541 0.619 0.7394 0.5896 0.574 0.6424 0.5315 0.645
TimesNet [60] 0.4683 0.4406 0.773 0.6483 0.5495 0.628 0.7597 0.5787 0.589 0.6386 0.5260 0.661
AGCRN [63] 0.4312 0.4156 0.819 0.6272 0.5322 0.641 0.6487 0.5658 0.603 0.5822 0.5010 0.694
MegaCRN [62] 0.4337 0.4167 0.814 0.6213 0.5306 0.647 0.6412 0.5547 0.617 0.5786 0.5038 0.687
PatchFormer [64] 0.4257 0.4149 0.829 0.6196 0.5294 0.653 0.6384 0.5497 0.625 0.5776 0.4956 0.699
TimeMixer [44] 0.4209 0.4125 0.836 0.6184 0.5246 0.664 0.6337 0.5432 0.631 0.5718 0.4909 0.705
DSformer [65] 0.4135 0.4028 0.863 0.6017 0.5139 0.675 0.6227 0.5281 0.657 0.5627 0.4816 0.721
Airformer [66] 0.4196 0.4097 0.857 0.6132 0.5223 0.667 0.6298 0.5416 0.635 0.5697 0.4839 0.716
MGSFformer 0.3934 0.3840 0.894 0.5863 0.5046 0.689 0.6046 0.5187 0.673 0.5413 0.4694 0.728

China sites VAR [58] 0.4612 0.4833 0.718 0.8627 0.7319 0.477 1.0418 0.8016 0.388 0.8624 0.7307 0.486
GRU [27] 0.4271 0.4517 0.743 0.7979 0.7108 0.495 0.9974 0.7703 0.407 0.8016 0.6734 0.518
LSTNet [59] 0.4319 0.4673 0.735 0.7809 0.6921 0.518 0.9814 0.7614 0.425 0.8194 0.6674 0.539
SciNet [61] 0.4093 0.4396 0.756 0.7394 0.6717 0.532 0.8968 0.7325 0.471 0.7684 0.6595 0.545
TimesNet [60] 0.4046 0.4388 0.763 0.7216 0.6631 0.544 0.8923 0.7383 0.467 0.7769 0.6554 0.559
AGCRN [63] 0.3915 0.4346 0.769 0.7161 0.6559 0.556 0.8609 0.7201 0.489 0.7391 0.6501 0.563
MegaCRN [62] 0.3814 0.4374 0.775 0.7115 0.6431 0.577 0.8763 0.7188 0.493 0.7374 0.6471 0.574
PatchFormer [64] 0.3791 0.4326 0.782 0.6774 0.6402 0.583 0.7843 0.6796 0.524 0.6679 0.6246 0.609
TimeMixer [44] 0.3752 0.4318 0.796 0.6735 0.6378 0.598 0.7715 0.6742 0.526 0.6615 0.6213 0.617
DSformer [65] 0.3718 0.4295 0.809 0.6617 0.6341 0.604 0.7418 0.6519 0.562 0.6408 0.6155 0.631
Airformer [66] 0.3684 0.4251 0.814 0.6529 0.6227 0.615 0.7538 0.6682 0.537 0.6475 0.6179 0.629
MGSFformer 0.3657 0.4225 0.825 0.6373 0.6124 0.634 0.7064 0.6255 0.608 0.6261 0.5890 0.697

Table 5
Performance comparison results of all baselines and the proposed model on other air pollution data (The best results are shown in bold. An upward arrow represents
accuracy, while a downward arrow represents error.).

Dataset Model PM2.5 PM10 SO2 NO2

MSE↓ MAE↓ CORR↑ MSE↓ MAE↓ CORR↑ MSE↓ MAE↓ CORR↑ MSE↓ MAE↓ CORR↑

Beijing sites PatchFormer [64] 0.3774 0.4437 0.741 0.3916 0.4615 0.719 0.4069 0.4634 0.715 0.4586 0.4962 0.688
TimeMixer [44] 0.3752 0.4403 0.744 0.3928 0.4632 0.725 0.3954 0.4576 0.733 0.4435 0.4897 0.694
DSformer [65] 0.3705 0.4384 0.759 0.3794 0.4521 0.743 0.3697 0.4398 0.761 0.4078 0.4756 0.702
Airformer [66] 0.3657 0.4335 0.762 0.3897 0.4586 0.739 0.3742 0.4415 0.755 0.4029 0.4684 0.714
MGSFformer 0.3418 0.4196 0.784 0.3617 0.4362 0.765 0.3585 0.4249 0.771 0.3864 0.4533 0.729

China cities PatchFormer [64] 0.5737 0.4874 0.695 0.5845 0.5026 0.677 0.6045 0.5089 0.662 0.5432 0.4712 0.705
TimeMixer [44] 0.5725 0.4852 0.702 0.5834 0.4983 0.682 0.6037 0.5076 0.667 0.5468 0.4753 0.717
DSformer [65] 0.5584 0.4759 0.715 0.5782 0.4915 0.697 0.5821 0.4913 0.689 0.5413 0.4678 0.729
Airformer [66] 0.5679 0.4804 0.723 0.5643 0.4879 0.706 0.5934 0.5024 0.674 0.5378 0.4625 0.731
MGSFformer 0.5374 0.4631 0.734 0.5519 0.4758 0.712 0.5617 0.4825 0.706 0.5126 0.4531 0.742

China sites PatchFormer [64] 0.6715 0.6276 0.594 0.6415 0.6043 0.621 0.6232 0.5804 0.639 0.6275 0.5892 0.638
TimeMixer [44] 0.6764 0.6259 0.606 0.6394 0.6024 0.625 0.6298 0.5834 0.631 0.6198 0.5796 0.642
DSformer [65] 0.6692 0.6238 0.615 0.6258 0.5871 0.644 0.6201 0.5779 0.649 0.6085 0.5687 0.663
Airformer [66] 0.6561 0.6154 0.634 0.6314 0.5923 0.635 0.6184 0.5742 0.654 0.6104 0.5753 0.657
MGSFformer 0.6318 0.5944 0.685 0.6134 0.5719 0.708 0.6054 0.5627 0.715 0.5974 0.5584 0.714
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data with five granularities to achieve modeling. We appropriately
remove some of these granularities to demonstrate the importance of
multiple granularities. (2)We evaluate the prediction effect using single-
granularity data and compare it with multi-granularity modeling. (3) In
this paper, we employ an approach that aligns with the dimensions of
the coarsest-grained data to help the RD block eliminate redundant in-
formation. To further assess the RD block, we also evaluated the impact
of aligning dimensions with data of other granularities on the experi-
mental results.
Table 8 displays the results of the proposed model utilizing features

with different granularities (Beijing sites dataset). g1 to g5 denote five
granularities from coarse to fine, respectively. Table 9 shows the
experimental results under the alignment of dimensions of data with
different granularities.
Based on the results, the following conclusions can be drawn:

(1) In comparison to single-granularity modeling, multi-granularity
modeling can yield superior prediction outcomes, validating the

effectiveness of the multi-granularity modeling concept. The
primary reason for this improvement is that data with diverse
granularities can provide additional information, enhancing the
model’s prediction accuracy.

(2) Fine-grained data significantly enhances the accuracy of short-
term prediction, while coarse-grained data improves prediction
accuracy for longer forecast intervals. Consequently, the effective
utilization of multi-granularity data can boost the MGSFformer’s
performance in multi-step prediction tasks.

(3) As the granularity of the aligned data becomes finer, the predic-
tion error of the model continuously increases. The main reason is
that aligning coarse-grained data to fine-grained data requires
initially mapping the coarse-grained data to a latent space using
an MLP, which may cause misalignment of information redun-
dancy positions, leading to decreased prediction performance.

Table 6
Performance evaluation of different components.

Dataset Model Horizon 1 Horizon 4 Horizon 7 Average

MSE↓ MAE↓ MSE↓ MAE↓ MSE↓ MAE↓ MSE↓ MAE↓

Beijing sites Pro-MLP 0.2245 0.3330 0.4396 0.5296 0.5429 0.5933 0.4146 0.4887
Pro-GWO 0.2030 0.3256 0.4379 0.5142 0.5271 0.5829 0.4016 0.4776
Pro-RL 0.2074 0.2968 0.4415 0.5065 0.4994 0.5657 0.3951 0.4597
Pro-GRU 0.1916 0.2928 0.5205 0.5502 0.5036 0.5433 0.4175 0.4655
Pro-SA 0.1825 0.2845 0.4038 0.4627 0.4693 0.5344 0.3679 0.4319
Proposed 0.1767 0.2788 0.3975 0.4536 0.4514 0.5311 0.3542 0.4246

China cities Pro-MLP 0.4558 0.4299 0.6517 0.5405 0.6711 0.5518 0.6052 0.5106
Pro-GWO 0.4523 0.4233 0.6301 0.5335 0.6738 0.5481 0.5977 0.5048
Pro-RL 0.4489 0.4203 0.6245 0.5312 0.6457 0.5499 0.5853 0.5037
Pro-GRU 0.4287 0.4129 0.6426 0.5394 0.6964 0.5623 0.6015 0.5081
Pro-SA 0.4015 0.3978 0.6078 0.5124 0.6235 0.5376 0.5649 0.4812
Proposed 0.3934 0.3840 0.5863 0.5046 0.6046 0.5187 0.5413 0.4694

China sites Pro-MLP 0.3907 0.4313 0.7151 0.6357 0.8826 0.7090 0.7217 0.6240
Pro-GWO 0.3941 0.4348 0.7159 0.6423 0.8177 0.6906 0.6888 0.6215
Pro-RL 0.3702 0.4338 0.7152 0.6285 0.7469 0.6484 0.6601 0.6049
Pro-GRU 0.3755 0.4274 0.6818 0.6449 0.8435 0.7241 0.6760 0.6226
Pro-SA 0.3704 0.4259 0.6532 0.6198 0.7235 0.6381 0.6449 0.5979
Proposed 0.3657 0.4225 0.6373 0.6124 0.7064 0.6255 0.6261 0.5890

Table 7
The results of ablation experiments.

Model Beijing sites China cities China sites

MSE↓ MAE↓ MSE↓ MAE↓ MSE↓ MAE↓

Proposed 0.3542 0.4246 0.5413 0.4694 0.6261 0.5890
w/o RE 0.3879 0.4418 0.5947 0.5045 0.6941 0.6237
w/o DF 0.3816 0.4397 0.5923 0.5075 0.6831 0.6164
w/o IE 0.4013 0.4517 0.6137 0.5128 0.7694 0.6457
w/o RD 0.4109 0.4547 0.6314 0.5236 0.8012 0.6569

Table 8
Performance comparison of the proposed model using features with different granularities (Beijing site dataset). g1 to g5 represent five granularities from coarse to
fine, respectively.

Granularity Combination Horizon 1 Horizon 4 Horizon 7 Average

MSE↓ MAE↓ MSE↓ MAE↓ MSE↓ MAE↓ MSE↓ MAE↓

g1 0.2237 0.3418 0.4789 0.5536 0.5416 0.6127 0.4228 0.5164
g2 0.2158 0.3392 0.4776 0.5524 0.5433 0.6137 0.4207 0.5138
g3 0.2119 0.3285 0.4718 0.5389 0.5341 0.6029 0.4153 0.5019
g4 0.2063 0.3207 0.4695 0.5236 0.5267 0.5978 0.4087 0.4829
g5 0.2018 0.3142 0.4625 0.5174 0.5152 0.5893 0.4029 0.4682
g1+g5 0.1953 0.3076 0.4349 0.4912 0.5024 0.5716 0.3916 0.4577
g1+g3+ g5 0.1916 0.2996 0.4186 0.4798 0.4873 0.5583 0.3827 0.4492
g2+g3+g4+g5 0.1834 0.2891 0.4029 0.4633 0.4716 0.5479 0.3728 0.4391
g1+g2+g3+g4 0.1897 0.2932 0.4058 0.4672 0.4685 0.5437 0.3794 0.4413
All 0.1767 0.2788 0.3975 0.4536 0.4514 0.5311 0.3542 0.4246

Table 9
The experimental results under the alignment of dimensions of data with
different granularities.

Aligned
Granularity

Beijing sites China cities China sites

MSE↓ MAE↓ MSE↓ MAE↓ MSE↓ MAE↓

g1 0.3542 0.4246 0.5413 0.4694 0.6261 0.5890
g2 0.3618 0.4305 0.5582 0.4739 0.6418 0.6014
g3 0.3785 0.4387 0.5729 0.4813 0.6872 0.6119
g4 0.3884 0.4454 0.5904 0.4952 0.7119 0.6253
g5 0.3978 0.4497 0.6045 0.5076 0.7429 0.6337
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4.6. Visualization

To visually evaluate our model, we visualized the prediction results
in temporal and spatial dimensions.

AQI time series visualization. Because these datasets contain air
quality data frommultiple sites, this paper shows the visualization of the
first site. Fig. 4 shows the prediction results and the residual series of the
proposed model. Based on the visual experimental results, it can be
found that the proposed model is close to the real AQI time series.
Specifically, the proposed model achieves satisfactory results whether
predicting mutated values or smooth sequences.

Spatial distribution visualization. Fig. 5 shows the visualizations
of spatial prediction results of several models on these three datasets.
Based on the results, it can be found that AQI presents a distribution
form with a high concentration in local areas and a low concentration in
other areas. Compared with other models, the prediction results of the

proposed model are closer to the real air quality data. Besides, the
proposed model can predict the areas with high AQI, which provides a
reference for environmental governance and personal protection.

4.7. Hyperparameter analysis

The setting of hyperparameters can significantly impact the perfor-
mance of MGSFformer. Therefore, it is necessary to conduct a compre-
hensive analysis and evaluation of the impact of key hyperparameters.
In this study, we evaluated four important hyperparameters: the number
of multi-head attentions, dropout, dimensions H’ after matching, and
the length of input features. Fig. 6 presents the CORR values of
MGSFformer under different hyperparameters. Based on the experi-
mental results, the following conclusions are drawn:

Fig. 4. The prediction results (left) and residual series (right) of the proposed model. The residual series represents the difference between the prediction results and
the real value.
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(1) The number of multi-head attentions and dropout have a minor
impact on the experimental results. Their main role is to affect the
size of the model’s parameters, but they do not lead to significant
performance fluctuations.

(2) The length of input features significantly affects the predictive
performance of MGSFformer. The primary reason is that the
length of input features influences the amount of information
MGSFformer can access. When the length of input features is
large, MGSFformer tends to capture more noise, which can lead
to overfitting. Conversely, when the length of input features is
small, MGSFformer may not gather enough critical information,
resulting in a decline in predictive performance.

4.8. Statistical test analysis

Statistical analysis is crucial for verifying the stability and repro-
ducibility of a model. In this paper, we use the T-test to evaluate the
performance of the MGSFformer compared to four baselines (Airformer,
DSformer, MegaCRN, and AGCRN). Specifically, we employ the T-test to
assess the residual sequences of the models, which represent the dif-
ferences between the actual values and the predicted results. From this
analysis, we obtained the mean, variance, and p-values. When the mean
and variance of the prediction model are close to zero, it is more stable.
A higher p-value indicates greater certainty in the prediction model. The
results of the statistical tests are presented in Table 10. The experimental
results show that the mean and variance of the residual series of
MGSFformer are significantly lower than those of other baselines. In
addition, the p-value of the residual series of MGSFformer is higher than
that of other baselines. These results further demonstrate the stability
and practicality of MGSFformer.

5. Conclusion and future work

The spatiotemporal prediction of Air quality can offer valuable ref-
erences for environmental governance and personal protection. This
study aims to leverage two crucial data patterns (multi-granularity and
spatiotemporal correlation) of Air quality data and address existing
technical challenges. To achieve this, we introduce the Multi-
Granularity Spatiotemporal Fusion Transformer, comprising three
intricately designed blocks: the residual de-redundant block, spatio-
temporal attention block, and dynamic fusion block. This paper is
summarized in the following three aspects:

Performance: The MGSFformer outperforms several state-of-the-art
baselines on three real-world datasets. Additionally, ablation experi-
ments and component replacement experiments underscore the signifi-
cance of the designed blocks.

Application: The MGSFformer proficiently predicts the temporal
trend and spatial distribution of Air quality, aiding governments and
individuals in effective environmental management. Furthermore,
experimental results indicate that fully recognizing and leveraging the
two key data patterns (multi-granularity and spatiotemporal correla-
tion) can significantly enhance prediction performance, offering novel
insights into air quality spatiotemporal data pattern analysis.

Limits and future work: At present, we need to manually set the
number of multi-granularity. In future research, we plan to optimize the
quality of input features by appropriately filtering different granular-
ities. We will explore decision-making techniques such as reinforcement
learning [73,74] to achieve adaptive multi-granularity feature selection.
In addition, we will consider researching optimization algorithms that
can further achieve result fusion, such as the Linear Population Size
Reduction Success-History based Adaptive Differential Evolution

Fig. 5. The real spatial distribution of AQI and the prediction results of the proposed model and several baselines. Darker areas have higher concentrations of
air quality.
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