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Abstract
Multivariate time series (MTS) data are ubiquitous in complex dy-
namic systems such as meteorology, transportation, and energy.
However, data heterogeneity caused by cross-domain variations
has become a central bottleneck restricting model generalization
and consistency in comparative studies. This paper systematically
reviews recent MTS forecasting research, revealing that inconsis-
tencies in experimental conclusions primarily arise from neglecting
substantial differences in data distributions and characteristics. To
address this issue, we introduce BasicTS, an fair and scalable bench-
mark designed to fairly quantify the impact of heterogeneity on
model performance. Subsequently, to tackle generalization chal-
lenges posed by heterogeneity, this tutorial proposes two adaptive
solutions: (i) developing BLAST, a balanced and diversity-enhanced
pre-training corpus that explicitly models heterogeneity, signifi-
cantly improving zero-shot general forecasting; and (ii) introduc-
ing ARIES, a relational assessment and model recommendation
framework that leverages a statistical pattern-to-model matching
mechanism to automatically select optimal forecasting models for
specific real-world sequences. Through comprehensive experiments
and case studies, we demonstrate that precisely characterizing and
leveraging data heterogeneity, beyond mere model design, is crucial
for improving the robustness of MTS forecasting. This research pro-
vides methodological guidance and practical insights for academia
and industry to fully exploit the value of time series data and make
data-driven decisions.
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1 Introduction
Multivariate time series (MTS) data are prevalent in various com-
plex dynamic systems, capturing overall trends such as temperature
and wind speed in meteorological systems [7], and traffic volumes
in transportation systems [26–29]. These systems exhibit significant
differences in their characteristics, whose behavior is shaped by
diverse factors and intricate operating mechanisms. Consequently,
their modeling, prediction, and control become particularly chal-
lenging. Time series data, serving as an abstract representation,
provide critical information for unified and cross-domain analysis
and forecasting of these dynamic systems.

In recent years, time series forecasting techniques have rapidly
advanced, leading to numerous modeling structures and strategies.
Prominent approaches include spatial-temporal forecasting [15, 16,
28, 37, 38] and long-term time series forecasting [19, 22, 36, 41–43].
However, despite notable progress, inconsistencies in experimental
conclusions persist among different studies, and issues related to
algorithm robustness and generalization remain unresolved. While
previous research [41] has partially discussed these issues from a
model architecture perspective, this tutorial uniquely focuses on
data heterogeneity as the central theme. Data heterogeneity refers
to significant differences in the statistical properties or distributions
of time series data across various domains or systems. Unlike fields
such as computer vision or natural language processing, where
data typically share strong semantic consistency, time series data
from different sources often lack common semantics or patterns,
despite structural similarities.

Tutorial overview. This tutorial will be presented in a traditional
lecture format lasting of 1.5 hours. Initially, we will systematically
review recent advancements in two major research areas within
MTS forecasting: spatial-temporal forecasting and long-term fore-
casting, highlighting the inconsistencies and contradictions found
in existing literature. Next, we introduce BasicTS, a fair and scal-
able benchmarking framework designed to systematically evaluate
how data heterogeneity impacts model performance. Using this
framework, we examine the strengths and weaknesses of various
forecasting algorithms under heterogeneous conditions. Finally,
to address challenges posed by data heterogeneity, this tutorial
proposes adaptive solutions from two perspectives: universal fore-
casting models and in-domain forecasting models. These adaptive
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strategies aim to improve the robustness and generalization of
forecasting methods. The tutorial is structured as follows:

• Understanding heterogeneity in MTS data (45 min):
– Key definitions (5 min)
– Overview of deep MTS forecasting (20 min)
– Quantitative evaluation and case studies of MTS data het-
erogeneity’s impact on model performance (20 min)

• Adaptive modeling strategies for MTS heterogeneity (45
min):
– Evaluation metrics for time series patterns (5 min)
– Balanced sampling time series corpus for universal fore-
casting models (20 min)

– Relation assessment and model recommendation for time
series forecasting (20 min)

Prior offerings. This is a newly developed tutorial and has not
been previously presented.

Target audience. This tutorial targets researchers in data mining,
machine learning, database systems, and data science, especially
those focused on time series and spatial-temporal data analysis.
With its emphasis on data heterogeneity, the tutorial systemati-
cally examines recent advances in MTS forecasting, clarifies the
reasons behind conflicting conclusions, and discusses relevant solu-
tions, aligning closely with the core themes of the SSTD conference.
Participants should have basic knowledge of data mining, deep
learning, and time series analysis. They will gain:

• Knowledge of cutting-edge developments in deep learning-
based time series forecasting.

• Insights into how data heterogeneity affects algorithm per-
formance and strategies to manage this issue.

• Opportunities for in-depth interaction with domain experts
to explore emerging trends and cutting-edge techniques in
time series and spatial-temporal analysis.

Related tutorials. Previous tutorials generally covered broader
surveys of time series analysis [13, 39] or addressed specific techni-
cal challenges, such as robust analysis [34] and causal discovery [11].
In contrast, this tutorial uniquely emphasizes data heterogeneity,
systematically analyzes the evolution of existing research, clari-
fies discrepancies in outcomes, and introduces advanced adaptive
modeling methods tailored to heterogeneous conditions.

2 Tutorial Outline
2.1 Understanding Heterogeneity in MTS Data
2.1.1 Key Definitions. Multivariate time series data comprise
several correlated sequences. In this tutorial, those sequences may
either share the same physical meaning—for instance, traffic flow
readings from multiple sensors in a road network—or they may
capture different quantities, such as the various meteorological
variables recorded by a single weather station.

Definition 1. Multivariate Time Series. A multivariate time
series includes multiple time-dependent variables. It can be expressed
as a matrix X ∈ R𝑇×𝑁 , where 𝑇 is the number of time steps and 𝑁
is the number of variables. We additionally denote the data in time
series 𝑖 ranging from 𝑡1 to 𝑡2 as X𝑖

𝑡1:𝑡2 .

Definition 2. Multivariate Time Series Forecasting. Given
historical data X ∈ R𝑇ℎ×𝑁 from the past 𝑇ℎ time steps, multivariate

time series forecasting aims to predict Y ∈ R𝑇𝑓 ×𝑁 of the 𝑇𝑓 nearest
future time steps.

Definition 3. In-Domain Forecasting Models are typically
tailored to the unique characteristics of the data. Due to the hetero-
geneity of MTS data, the optimal model architecture and parameters
are rarely transferable between datasets.

Definition 4. Universal Forecasting Models1 are pre-trained
on large-scale time series datasets and are capable of performing
accurate zero-shot forecasting across diverse domains.

2.1.2 MTS Forecasting: A Brief Overview. We cover studies
related to Long-term Time Series Forecasting (LTSF) and Spatial-
Temporal Forecasting (STF), which are the two most prominent
topics in recent MTS forecasting studies. First, to achieve accu-
rate long-term time series forecasting, researchers have concen-
trated on extracting temporal patterns from multivariate series.
Owing to their strong ability to model long-range dependencies,
Transformer[31]-based architectures have become a focal point
of recent work [19, 22, 36, 42, 43]. However, a wave of simpler,
more computationally efficient linear models [41] has emerged,
calling into question both the necessity of Transformers and their
computational cost. This tutorial therefore reviews the evolution
of Transformer-based LTSF models, highlights the efficient linear
alternatives that have gained attention in recent years, and synthe-
sizes the key disagreements and incompatibilities between the two
approaches in terms of empirical performance.

Second, unlike LTSF, spatial-temporal forecasting must cap-
ture not only temporal dynamics but also the interdependencies
among multiple time series. Since graph convolutional networks
(GCNs) [14] were introduced in 2017, spatial-temporal graph neural
networks (STGNNs) [15, 16, 28, 29, 38] have become the dominant
solution, combining the structural modeling power of GCNs with
the temporal modeling of sequence models and delivering signifi-
cant gains across tasks. Recently, however, some studies have ques-
tioned the necessity of GCNs in spatial-temporal prediction and
pointed out their efficiency limitations [5, 6, 18, 27]. Accordingly,
this tutorial traces the development of STGNNs and summarizes
current findings on the necessity of spatial modeling and the in-
compatibilities among different spatial-modeling strategies.

2.1.3 BasicTS: A Fair & Scalable Benchmark. To draw reliable
conclusions, this tutorial first introduces BasicTS [17, 25], a fair
and scalable benchmark for time series forecasting. By enforcing
a unified pipeline and offering a rich set of evaluation metrics,
BasicTS eliminates performance inconsistencies and incomplete
assessments that stem from divergent data pre-processing routines,
training hyper-parameter settings, and metric implementations.

Leveraging BasicTS and its results, we take a closer look at the
heterogeneity of MTS data and dissect the seemingly contradictory
findings that often surface in experiments. Concretely, we catego-
rize datasets along two axes—spatial and temporal—to expose the
distinct modeling challenges each category poses. On the spatial
axis, we use sample indistinguishability as the key indicator of

1While some studies refer to these models as foundational or general models, this paper
adopts the term universal forecasting models [1, 8, 32, 35] for the sake of consistency
and to avoid confusion with multi-task models.
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dataset characteristics, while on the temporal axis we classify data
by the degree of distribution drift over time.

Our analysis shows that most methods are effective only for
specific data types; overlooking data heterogeneity can create con-
tradictions and obscure which techniques are truly appropriate.

2.2 Adaptive Modeling of MTS Heterogeneity
2.2.1 Quantifying Heterogeneity. There are two intuitive ways
to tackle the heterogeneity. Path 1 leverages large-scale pre-training
corpora to build universal forecasting models that remain robust
across domains; Path 2 adaptively picks the most suitable architec-
ture for each data pattern to maximize accuracy and computational
efficiency. In either case, explicitly characterizing heterogeneity
is pivotal—whether to boost a universal model’s generalization
or to map data patterns to in-domain models. This tutorial there-
fore profiles time series with seven widely used statistical descrip-
tors—stationarity, trend, periodicity, volatility, homoscedasticity,
memory, and anomaly—capturing their patterns from multiple an-
gles. These metrics lay a solid foundation for heuristic dataset
classification, informed model selection, and adaptive refinement.

2.2.2 Balanced Sampling Time Series Corpus for Univer-
sal Forecasting Models. The emergence of universal time series
forecasting models has revolutionized zero-shot prediction across
various domains [2, 4, 9, 12, 20, 21, 30, 35]. This tutorial first pro-
vides a brief overview of the evolution of universal forecasting
models, discussing their pre-training datasets and architectural
designs. The generalization capability of these models primarily
stems from large-scale, diverse pre-training data. However, the
importance of data diversity has not been sufficiently explored.
Current large-scale time series datasets often suffer from inherent
biases and imbalanced distributions, limiting model performance
and generalization capabilities.

To address this issue, we introduce BLAST [24], a novel pre-
training corpus that explicitly models data heterogeneity and em-
ploys a balanced sampling strategy to enhance diversity and cor-
rect distributional biases. Experimental results show that models
pre-trained on BLAST achieve state-of-the-art performance, signifi-
cantly reducing computational resources and training data require-
ments. This work is the first to highlight the critical role of data
diversity in enhancing training efficiency and the generalization
capability of universal forecasting models.

2.2.3 Relation Assessment and Model Recommendation for
Time Se ries Forecasting. Distinct from language or images, the
statistical quantitative properties inherent in time series already
suggest their underlying patterns. Although deep forecasting mod-
els employ complex architectures [33, 40], they still essentially
adopt similar or shared strategies to capture specific patterns. How-
ever, the relationship between model strategies and data patterns
is not fully explored, and such mismatches may severely degrade
performance [3, 10, 23].

To address this problem, we introduce ARIES to assess the rela-
tion between strategies and patterns and recommend appropriate
forecasting models for realistic time series. For assessment, we
test 50+ models on synthetic data with diverse patterns and per-
form experimental analyses. For real-world applications, ARIES

proposes the first recommendation framework for deep forecasting
models that can also provide explanatory justifications related to
properties and strategies. Overall, ARIES not only offers a data-
centric perspective on forecasting innovation, but also addresses
the interpretability in deploying black-box forecasting models.
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