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GRAPHICAL ABSTRACT

PUBLIC SUMMARY
◼ Decision intelligence evolved from rule-based to AI-driven, enabling adaptive, context-aware choices.

◼ Foundation models unify knowledge to enable scalable, adaptive decision-making in healthcare and other fields.

◼ The decision-making foundation model’s progress hinges on security, privacy, and human-AI ethics.
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Intelligent decision-making (IDM) is a cornerstone of artificial intelligence 
(AI) designed to automate or augment decision processes. Modern IDM 

paradigms integrate advanced frameworks to enable intelligent agents to 
make effective and adaptive choices and decompose complex tasks into 
manageable steps, such as AI agents and high-level reinforcement 
learning. Recent advances in multimodal foundation-based approaches 
unify diverse input modalities—such as vision, language, and sensory 
data—into a cohesive decision-making process. Foundation models 
(FMs) have become pivotal in science and industry, transforming deci- 
sion-making and research capabilities. Their large-scale, multimodal 
data-processing abilities foster adaptability and interdisciplinary break- 
throughs across fields such as healthcare, life sciences, and education. 
This survey examines IDM’s evolution, advanced paradigms with FMs 
and their transformative impact on decision-making across diverse scien- 
tific and industrial domains, highlighting the challenges and opportunities 
in building efficient, adaptive, and ethical decision systems.

INTRODUCTION 
Decision theory has evolved over centuries and progressed from early con- 

cepts of probability theory and expected value to more sophisticated models 
incorporating psychological factors. In the 1940s, Von Neumann and Morgen-

stern’s work about expected utility provided the mathematical foundations and 
a conceptual framework for decision-making. 1 Herbert Simon’s Administrative 
Behavior was a landmark work that significantly shaped modern decision the- 
ory, emphasizing the cognitive aspects of decision-making. 2,3 Later, Daniel Kah- 
neman and Amos Tversky proposed Prospect Theory and the concept of two 
systems of thinking, providing a more accurate understanding of decision-mak- 
ing. 4 In summary, decision-making is a complex process of problem solving, 
which is not a single event but a process involving a series of steps. One widely 
accepted multistep decision-making framework is called OODA, 5 short for 
observe, orient, decide, and act phases in a loop. Intuitively, OODA describes 
the process of collecting or rendering the sensory data, extracting informative 
evidence, executing logical reasoning, and determining the optimal action in 
either a sequential or nonsequential manner. Intelligent decision-making 
(IDM) represents a cornerstone of artificial intelligence (AI) with the purpose 
of surrogating some OODA phases or assisting human capabilities in evaluating 
options, making choices, or manipulating outcomes through active intervention 
in complex and dynamic environments. 6 It is an interdisciplinary field that 
comes across computer science, psychology and cognitive science, economics 
and game theory, operation research, control theory, and statistics. Distin- 
guished from traditional decision-making processes, the implementation of 
IDM relies on a collection of models, optimization algorithms, and probabilistic 
inference tools to automate the process and enjoys lasting popularity in ro- 
botics, 7 finance, 8 healthcare, 9 and other industrial applications.
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In total, this survey aims at facilitating IDM’s application across different 
fields. To this end, we introduce IDM concepts, summarize the required tech- 
niques in IDM, recap recent advances in typical IDM paradigms, and present 
some promising foundation model (FM) based IDM approaches.

Elements of decision-making 
IDM is composed of four elements: (1) the environment for agents to engage 

and collect observations and feedback; (2) the agents or decision-makers to 
execute plans and strategies under a feasible action space; (3) the rewards or 
utility function to specify the objective or goal; and (4) intelligent tools such 
as heuristic rule construction, learning or mining models, and other optimization 
strategies. As the environment is sometimes interactive and involves the state 
transition of dynamical systems, we can further constitute the Markovian deci- 
sion process (MDP) 10 when the system transition relies only on the state 
observed in the last time step; otherwise, the environment is non-Markovian. 
On the other hand, from the system state’s observability in decision-making, 
we can further split the decision process into completely observed decision pro- 
cesses and partially observed decision processes. For example, some robotic 
arms are not able to perceive some joint positions but can collect some images 
from cameras to infer the exact state of itself, and the inherent decision-making 
environment can be abstracted as a partially observed MDP (POMDP). 11 We 
can further define the nonstationarity of environments when underlying system 

dynamics and statistical traits change over time. In terms of intelligent tools, 
several have emerged in the last century, which include rule construction, heu- 
ristic search strategies, machine-learning methods, and employment of FMs.

Concept of FMs 
The literature generally refers to the large-scale, pretrained machine-learning 

model for general-purpose use in numerous downstream tasks such as FMs. 
Some typical models, such as BERT, 12 GPT, 13 and contrastive language-image 
pretraining (CLIP), 14 are trained on massive language, vision, audio, or 
multimodal datasets to capture informative patterns and extract generalizable 
representations of examples. Developing FMs handles diverse tasks and de- 
pends on the integration of several learning paradigms, such as self-supervised 
learning, 15,16 meta-learning, 17–19 and multitask learning. 20–22

When decision-making meets FMs 
The birth of FMs allows for rapid adaptation to specific applications through 

fine-tuning, 23,24 thereby circumventing the need to learn from scratch during

deployment. Considering some computational- and data-expensive compo- 
nents in traditional decision-making paradigms, e.g., vanilla RL, it is necessary 
to revolutionize decision-making with the help of technologies in developing 
FMs and seek paths to benefit from them. 
Also, it is important to emphasize that this work distinguishes itself from 

other surveys on FMs. The primary focus here is to outline trends in IDM and 
explore the potential of leveraging recent advancements in FMs to 
facilitate the development of IDM models across a wider array of application 
scenarios.

Decision-making technologies genealogy 
Decision-making techniques can be divided into traditional decision-making 

techniques and IDM techniques. Conventional decision-making generally de- 
pends on the experience and intuition of human experts, while IDM depends 
on the driving mode of algorithms and data. IDM solves the problem of algo- 
rithm explosion when traditional decision-making faces large-scale state action 
spaces, as well as the problem of poor generalization of traditional decision- 
making algorithms in different fields. The conventional decision-making tech- 
niques include game-theory-based decision-making techniques, 25 heuristic- 
optimization-based decision-making techniques, 26 and knowledge-based deci- 
sion-making techniques. 27 IDM includes IDM techniques based on deep rein- 
forcement learning (DRL), large language models (LLMs), and basic large 
models. 28 Traditional techniques are highly effective in handling simple, linear 
decision problems, but they still have certain limitations when facing complex 
decision spaces with multidimensional nonlinearity. IDM based on large models 
has excellent decision-making ability when facing high-dimensional complex 
nonlinear state action spaces. Different development stages of IDM are shown 
in Figure 1. 

IDM with expert rules. Throughout the history of intelligent decision sys- 
tems (IDSs), the decision support system (DSS) has played a pivotal role in 
shaping both academia and industry. The primary aim of establishing the 
DSS is to replicate the decision-making patterns of domain experts and to 
execute judgments through automated programs. 29 In the early stages, struc- 
tured datasets were scarce and challenging to obtain, leading to the use of a 
collection of rules and common sense as the knowledge base to identify sce- 
narios and apply reasoning for decision-making. This approach enables fast 
processing of decision queries with a good level of explainability; however, it 
is limited to specific domains, relies heavily on costly expert knowledge, and 
struggles to address cases beyond the established knowledge base.
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As the number of learnable episodes increases within the database, machine- 
learning and data-mining tools gain prominence in system development. They 
facilitate the creation of data-driven models that capture meaningful patterns, 
thereby enhancing decision-making processes. Effective algorithms and 
learning models enhance the advantages of data-driven DSSs by predicting out- 
comes and trends under various policies while also enabling the automatic dis- 
covery of knowledge. One significant approach within this realm is DRL, 10 which 
involves interacting with environments, collecting reward signals, and assigning 
credit to actions during sequential decision-making. DRL has achieved impres- 
sive successes in areas such as real-time strategic games, 30,31 drone racing, 32 

and GO games. 33 To enhance sample efficiency, a notable paradigm known as 
offline RL has emerged, which learns from a static, large transition dataset. 34,35 

While these data-driven DSSs improve generalization capabilities as data quan- 
tity and quality increase and reduce reliance on meticulously crafted expert 
knowledge, they remain largely static and are only effective in a limited range 
of complex scenarios, ultimately falling short of achieving true plug-and-play 
functionality in practice. 

IDM with shallow and deep learning methods. The conventional decision- 
making techniques include game-theory-based decision-making methods, heu- 
ristic optimization algorithm-based methods, and knowledge-based decision- 
making techniques. Traditional decision-making techniques are designed to 
address different problems and select appropriate decision-making algorithms 
based on the specific decision problem. The game modes between intelligent 
agents include prisoner’s dilemma, gambler’s game, and Nash equilibrium. To 
achieve maximum cumulative benefits and returns for each agent, IDM driven 
by agent returns is utilized based on agent game rules. 
Heuristic optimization algorithms include genetic algorithm (GA), particle 

swarm optimization algorithm (PSO), ant colony algorithm (ACO), taboo search 
(TS), and simulated annealing algorithm (SA), each designed for different optimi- 
zation problems and used to solve optimization problems in specific fields. GA, 
PSO, and ACO are all swarm optimization algorithms, while TS and SA are indi- 
vidual optimization algorithms. GA and ACO can only be used for discrete opti- 
mization, while the other three algorithms can be used for both discrete and 
continuous optimization. The core content of GA algorithm is to preserve better

solutions in the selection stage, while new solutions are generated in the cross- 
over and mutation stages. The core content of PSO is to use both local and global 
optimal solutions during the solution update process. The core of ACO algorithm 

is to update and optimize the path through the precipitation and volatilization of 
pheromones between ants. The core of TS algorithm is to use taboo tables to 
avoid repeated searches. Global neighborhood search algorithm is an extension 
of local neighborhood search algorithm. The core of SA algorithm is to simulate 
the principle of solid annealing and gradually reach the ground state through 
neighborhood search. The application scope of GA algorithm includes optimiza- 
tion design, machine learning (parameter optimization), and image processing. 
PSO is applied to neural network weight optimization, wireless sensor network 
node deployment, machine-learning parameter optimization, image processing, 
and intelligent control. ACO algorithm’s application areas include traveler prob- 
lems (finding the shortest path), resource scheduling, and network optimization, 
The application scope of TS algorithm is combination optimization problem, 
optimization model parameters, and optimization of communication network to- 
pology structure. The application scope of SA algorithm is traveler issues and 
parameter optimization. 
Knowledge-based decision-making methods include Bayesian inference and 

expert systems, which use prior knowledge or knowledge bases to achieve 
reasoning decisions and action execution from environmental states to actions. 
Bayesian inference techniques and expert decision systems utilize prior 
knowledge and predefined rule libraries to achieve decision-making and action 
selection for specific problems. Traditional decision-making techniques are 
commonly used to deal with simple linear low-dimensional decision-making 
problems, selecting corresponding decision-making algorithms for specific en- 
vironments and decision-making applications. However, when faced with 
complex decisions in high-dimensional large-scale state spaces, traditional de- 
cision-making presents problems of scale explosion and exponential increase in 
complexity. IDM based on RL and large models can exhibit good performance in 
large-scale state spaces and high-dimensional state action spaces, achieving 
greater rewards in action execution. 
The trend reveals the potential of AI technology in reshaping decision-making 

frameworks, and the source of decision-making priors evolves from the

Figure 1. The development history of intelligent decision-making Rule-based decision support system achieves decision support through the rule base and the fact base and is 
suitable for scenarios driven by clear rules. Data-driven decision support system, which combines technologies such as neural networks and decision trees, is applied to projects like 
Deep Blue and AlphaGo and has surpassed humans in multiple fields. Decision-making with foundation models, an emerging technology in data-driven decision-making, achieves 
decision optimization by utilizing large models (such as the GPT series and LLaMA) through steps like demonstration data collection, data annotation, and reward model training, 
with application cases including OpenVLA, RoboGen, and others.
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hard-encoded expert or human skill to the extraction of the large-scale dataset. 
IDM technologies are divided into RL-based and large-model-based decision, as 
well as decision-making with an FM indicating any model trained on a broad da- 
taset (text, image, audio, and video) and can apply to a wide of downstream
tasks. 36 RL-based decision methods are generally used for the selection from
state to action, while FM-based decisions can be used to sequence decision, 
group decision, and multimodal decision. 
RL-based methods consist of value-based, value-distribution-based, policy- 

based, and actor-critic-based RL algorithms and have already been used for 
Atari games and multiple decision-making scenes and state-action selection 
environment, which will improve the decision-making performance for more 
application environments. 
The initial RL is Q-learning based on table learning, then the DQN algorithm 

using a deep neural network instead of the table, which expands the state action 
to a higher dimensional state space and more complex representation. Addi- 
tionally, the Double DQN algorithm uses the value network and target network 
to update the Q-value (return or accumulated rewards); the Deuling DQN uses 
Dueling architecture containing the state value and advantage value. Value-dis- 
tribution-based RL methods include C51, 37 QR-DQN, IQN, and FQF, which utilize 
the idea of value distribution to improve the decision-making ability. Policy- 
based RL methods utilize the direct action output to generate optimal action 
and include the deep policy gradient (DPG), DDPG, and proximal policy optimi- 
zation (PPO). Furthermore, actor-critic-based RL algorithms include SAC, AC, 
A2C, and A3C, of which A3C utilizes asynchronous advantage actor-critic to ac- 
quire more efficient decision-making and larger cumulative reward. 
Compared with RL-based decision-making methods, the FM-based deci- 

sion-making has stronger generalization ability and adaptability. FM can act 
as agent (planner, decision-maker, perceiver, and actor), environment and 
designer, encoder, conditional generation module, and human-machine inter- 
actor. The current FMs include Transformer, Bert, T5, and GPT series, as 
well as LLaMA, PaLM, and others, which can be used for FM-based deci- 
sion-making including sequence, group, and multimodal decision-making. 
Importantly, combining FMs with RL-based methods has emerged as a 
more popular IDM paradigm. 
Based on the advancements in single-agent RL, multi-agent reinforcement 

learning (MARL) extends RL methods to environments involving multiple agents 
that must interact through cooperation or competition. MARL introduces new 
challenges, including nonstationarity, credit assignment, and inter-agent 
communication, which are addressed through various training and execution 
paradigms. 38 Decentralized training and decentralized execution (DTDE) 39 en- 
ables agents to learn and act independently without requiring centralized coor- 
dination, making it suitable for fully distributed systems. Centralized training 
and decentralized execution (CTDE) 40–42 allows agents to leverage centralized 
information during training for improved learning efficiency while maintaining 
decentralized policies during execution to ensure scalability and adaptability 
in real-world applications. Grouped training and decentralized execution 
(GTDE) 43 combines these approaches by organizing agents into groups for 
intra-group coordination during training while ensuring decentralized execution 
across groups. These paradigms provide robust frameworks to tackle the com- 
plexities of multi-agent systems, enabling MARL to optimize decision-making 
across cooperative, competitive, and mixed settings. 
IDM technology based on large models utilizes the input of the large model as 

the state input, the output of the large model as the action execution, and the 
use of prompt engineering such as thought chain technology, thought tree, 
and thought map technology to form a decision-making process based on 
the large model. The currently available large models include Transformer, 
Bert, T5, and GPT series large models, as well as LLaMA, PaLM, and other large 
models, which can be used for sequence decision-making and group decision-
making. 

FM-based IDM. Armed with the computational platform, data are consoli- 
dated into model parameters as knowledge after optimization. 
Realizing the significance of datasets, computation power, and model capac- 

ity, 44 pioneer researchers have shifted attention to developing foundation deci- 
sion-making models (FDMMs). Unlike traditional paradigms for developing intel- 
ligent models specific to decision-making scenarios, the original wish of 
developing the FDMM is to capture generalizable representations for 
scenarios, enable fast adaptation in a zero-shot or few-shot way, 45,46 and 
dynamically evolve with open environments in decision-making. In this way,

we can achieve computational efficiency during the test and seamlessly adapt 
to changing environments with minimal learning resources, which can be an 
indispensable consideration in real-time control problems, such as autonomous 
driving. 
The primary aspect of the FDMM that differs from the previous data-driven 

DSSs lies in learning paradigms oriented to scenario distributions. To secure 
the cross-scenario decision-making at a lower computational or data cost, 
the intelligent decision-maker has to capture inherent structures from the 
sequential dataset, e.g., the next token as the optimal decision action through 
self-supervised learning, 47 simultaneously handle multiple requests in a multi- 
task manner, 48 and sometimes learn to learn with a few examples as a guide- 
line. 49 Admittedly, we must recognize the ingredients in the above FDMM’s gen- 
eral recipe, i.e., sufficient scenarios, compact neural inference modules, and 
large-scale computations. 
Overall, the necessity of developing the FDMM lies in a broad application pur- 

pose to scale across a wide range of decision-making scenarios rather than 
specific ones. Importantly, the FDMM scales previous data-driven models 
from scenario-specific to scenario-versatile and compresses large-scale deci- 
sion-making episodes into large-scale model parameters as the primary source 
of the prior, obtaining transferable representations for downstream tasks. 
Meanwhile, the decision-making priors seem to be comprehensive nowadays 
to constrain the search of policies.

OVERVIEW AND DEVELOPMENT OF FMs 
Foundation models, such as LLMs and multimodal AI systems, have 

emerged as powerful tools for IDM due to their ability to process and synthesize 
vast amounts of data across diverse domains. These models, trained on exten- 
sive datasets, excel at identifying patterns, generating insights, and providing 
context-aware recommendations, which are critical for making informed deci- 
sions in complex and dynamic environments. By leveraging their generalized 
knowledge and adaptability, FMs can assist in tasks ranging from strategic 
planning and risk assessment to real-time problem-solving and personalized de- 
cision support. Their integration into decision-making frameworks enhances ef- 
ficiency, accuracy, and scalability, enabling organizations and individuals to 
tackle challenges that were previously intractable. To better introduce decision 
intelligence based on FMs, we introduce the development of FMs in this section. 
Specifically, we first present the basics of FMs. We then detail the development 
of LLMs (LLMs) and multimodal FMs. Finally, we introduce the optimization 
of FMs.

Basics of FMs 
An FM is any model that is trained on broad data (generally using self-super- 

vision at scale) that can be adapted (e.g., fine-tuned) to a wide range of 
downstream tasks. 50 FMs are characterized by their massive scale and vast 
parameter count. They excel in transfer learning, easily adapting to new tasks. 51 

FMs exhibit emergent abilities, often demonstrating unexpected functionalities. 
These features enable FMs to exert transformative impacts across various in- 
dustries, significantly advancing AI technology. 50,52–55 

The evolution of FMs has been intrinsically linked to advancements in IDM, 
beginning with word-embedding techniques such as Word2Vec 56 and 
GloVe, 57 which laid the groundwork for understanding semantic relationships 
in data. A pivotal moment came with the introduction of the Transformer archi- 
tecture, 58 which enabled more sophisticated decision-making through its self- 
attention mechanism, followed by BERT, 59 which revolutionized natural lan- 
guage processing by enabling context-aware predictions. The field then saw 
rapid advancements with large-scale language models such as GPT-2 60 and 
GPT-3, 61 which demonstrated unprecedented capabilities in language under- 
standing and generation, empowering systems to make more informed and 
nuanced decisions. The scope expanded further with multimodal models 
such as DALL-E 62 and CLIP, 14 which integrated vision and language for richer 
decision-making contexts, while Swin Transformer 63 applied similar principles 
to computer vision, enhancing visual reasoning and decision-making. Recent 
developments, exemplified by models like GPT-4, 13 have continued to push 
the boundaries of scale and refinement, enabling more accurate, context-aware, 
and adaptive decision-making across diverse domains. This progression under- 
scores a shift from specialized, unimodal models to increasingly powerful, ver- 
satile, and multimodal systems, fundamentally reshaping the landscape of AI
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and its capacity for IDM. 64–66 Indeed, FMs have revolutionized academic 
research in fields such as natural language processing (NLP), computer vision 
(CV), and graph learning, enabling more sophisticated and data-driven decision- 
making processes that were previously unattainable. 

Natural language processing. FMs first gained popularity in NLP. The FMs 
of NLP start with ELMo, 67 which adopts bidirectional long short-term memory 
(LSTM) 68 and learns contextualized word representation. Following the intro- 
duction of Transformer, FMs in NLP have seen tremendous development, 
and various FMs have been proposed. They can generally be divided into two 
approaches: (1) autoregressive language FMs and (2) contextual language 
FMs. Autoregressive FMs are a class of models that generate text word by 
word, using previously generated words as context to predict the next word. 
A typical example is the GPT series. 60,61,69 This approach excels in text-genera- 
tion tasks, capable of producing coherent and creative text. The autoregressive 
language model only utilizes information from either left or right, but not simul- 
taneously from both directions. In contrast, the contextual language FMs focus 
on capturing the complex semantics and contextual information of language. 
Typical contextual language FMs include BERT, 61 UniLM, 70 and T5. 71 They 
enhance performance in various natural language processing tasks, such as 
text classification, question answering, and sentiment analysis, through bidirec- 
tional encoder architectures or deep contextual representations. The advantage 
of these models lies in their ability to understand and generate language out- 
puts that are more contextually relevant. 

Computer vision. The evolution of computer vision FMs starts with convolu- 
tional neural networks (CNNs), exemplified by models like ResNet. 72 Through 
training on large amounts of image data, they can be used to extract image 
features and facilitate transfer learning. 73,74 Inspired by the success of 
Transformers in NLP, some studies adopt Transformers as a new backbone. 
The Vision Transformer 75 marks a significant shift, which processes images 
as sequences of patches, capturing long-range dependencies and enabling 
more nuanced feature extraction. Models like Swin Transformer 63 further refine 
this approach. In another development, diffusion models 76–79 are proposed, 
which iteratively denoise a random Gaussian noise image through a series of 
learned transformations, progressively refining it to match a target distribution. 
This approach excels in image-generation tasks by producing high-quality 
diverse outputs. Representative models include Stable Diffusion 3.0, 80 DiT, 81 

and Sora, 82 among others. 78,83–85 The progression continued with multimodal- 
ity models 86–88 such as CLIP 14 and MiniGPT-4, 87 which align images and text in 
a shared space, enabling versatile zero-shot classification. 

Graph learning. Graph learning aims to solve the problem of understanding 
and analyzing graph-structured data, focusing on tasks like node classification, 
link prediction, and graph classification. 89–95 FMs in graph learning are also 
becoming an emerging research topic, aiming to create versatile models that 
can be applied across diverse graph-based tasks and domains. The graph 
learning FMs can be categorized into three types: graph neural network 
(GNN)-based models, LLM-based models, and GNN+LLM-based models. 96,97 

(1) GNN-based models focus on leveraging existing graph learning paradigms 
and improving graph learning by innovating in areas such as the basic GNN 
architecture, pretraining techniques, and task-specific adaptations. 98–100 For 
example, GCC 101 utilizes contrastive learning to pretrain graph node embed- 
dings. All in One 102 proposes a graph prompt to adopt GNN to various 
downstream tasks. (2) LLM-based models investigate the use of LLMs for graph 
tasks by transforming graph data into text or token formats, enabling the 
application of language model capabilities to graph problems. Among them, 
TextForGraph 103 transforms graph data to textual data by a carefully designed 
prompt template and adopts LLMs to process the textual data. InstructGLM 104 

incorporates graph node tokens into the vocabulary of the LLM and utilizes in- 
struction tuning to adapt the LLM to graph learning tasks. (3) GNN+LLM-based 
models aim to enhance graph learning by combining GNNs and LLMs and thus 
can leverage the strengths of both approaches. For instance, GraD 105 utilizes 
LLMs to encode nodes’ textual attributes, after which classic GNNs are adopted 
to encode the graph. 

Other fields. FMs are also making significant strides in other fields, such as 
like time-series analysis, code generation, and speech processing 106,107–109 In 
time-series analysis, FMs aim to improve the ability of forecasting and 
anomaly detection by capturing complex temporal patterns. 110–113 

Studies 114–116 try to utilize the knowledge of LLMs and build FMs based on 
LLMs. Single-modal 117–119 time-series FMs are trained solely based on time-se-

ries data, while multimodal models 120,121 are also proposed to model informa- 
tion from both text and time-series modalities. In code generation, models like 
OpenAI’s Codex 122 and Google’s AlphaCode 123 are designed to understand and 
generate code snippets from natural language descriptions. These models 
assist in software development by automating coding tasks, thus enhancing 
productivity and reducing human errors. 124,125 Speech processing focuses on 
tasks such as speech recognition, synthesis, and translation. Speech FMs 
generally involve both speech and text modalities. Early models like Speech- 
Transformer 126 adapt Transformer for speech tasks, enhancing automatic 
speech recognition by leveraging attention mechanisms to integrate and align 
audio and textual information, improving transcription accuracy and contextual 
understanding. Recently, some studies have aimed to replicate the scaling law 
in speech processing. For example, Vall-E 127 introduces the Transformer archi- 
tecture to encode audio features and attempts to utilize the capabilities of LLMs 
to achieve more natural text-to-speech synthesis. 
The application of FMs has become a cornerstone in advancing IDM. In 

knowledge-based question answering, LLMs like GPT 61 demonstrate remark- 
able versatility in responding to diverse queries, while BERT 59 excels in reading 
comprehension, enabling more accurate and context-aware decision-making. 
In reasoning tasks, Chain of Thought (CoT) 128 enhances LLMs’ complex 
reasoning abilities by prompting them with intermediate reasoning steps, signif- 
icantly boosting performance in arithmetic, common sense, and symbolic 
reasoning tasks. Tree of Thought (ToT) 129 takes this further by enabling 
LLMs to explore multiple reasoning paths and evaluate choices through 
deliberate decision-making processes, fostering more robust and adaptive 
reasoning. In autonomous systems, LanguageMPC 130 integrates LLMs as deci- 
sion-makers, enabling complex reasoning and actionable command generation 
through structured thought processes and seamless integration with low-level 
controllers like model predictive control. The integration of LLMs into multi- 
agent systems 131 further enhances collective intelligence by enabling agent 
communication, reasoning, and learning in complex decision-making scenarios. 
In healthcare, ChatGPT has been evaluated for its potential to assist in clinical 
decision-making for radiology, 132 demonstrating the transformative role of 
LLMs in high-stakes decision-making. Similarly, integrating LLMs into autono- 
mous vehicles enhances decision-making through natural language interaction, 
contextual understanding and continuous learning. 133 Expel 134 introduces an 
agent that collects experiences through trial and error, extracts insights, and le- 
verages both insights and past experiences to improve decision-making on new 
tasks without requiring model parameter updates, showcasing the potential for 
adaptive and experience-driven decision-making. These advancements under- 
score the pivotal role of FMs in enabling more accurate, context-aware, and 
adaptive decision-making across diverse domains, fundamentally transforming 
how intelligent systems operate and interact with the world.

The development of FMs 
FMs first attracted great attention in the domain of NLP, and soon they were 

expanded to the multimodal domain. In this section, we introduce the develop- 
ment of LLMs and multimodel FMs, respectively. The key developments of FMs 
are shown in Figure 2. 

The development of LLMs. LLMs represent a significant advancement in AI 
and are designed to understand, process, and generate human-like text. 
Through extensive pretraining on vast corpora, LLMs have not only demon- 
strated remarkable language comprehension but also achieved a level of gen- 
eral intelligence that positions them as essential tools for IDM. Their ability to 
analyze complex data, generate insights, and predict outcomes makes them in- 
tegral to enhancing decision-making processes across various domains. This 
section will provide a detailed introduction to the backbone models, mainstream 

architectures, pretraining strategies, fine-tuning, and alignment techniques, as 
well as the applications of LLMs. 

Transformer: The backbone. LLMs are advanced machine-learning models 
designed to understand and generate human language. Their large parameter 
counts enable excellence in tasks like text generation, translation, and summa- 
rization. At the heart of the Transformer 58,135 model is a design consisting of 
encoders and decoders, with each encoder comprising multiple identical layers 
that include multi-head self-attention mechanisms and simple feedforward net- 
works. In addition, the decoders add cross-attention layers to process encoder 
outputs. 136,137 The self-attention mechanism allows direct contextual links
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between distant inputs, effectively capturing long-range dependencies. 138,139 

Their hierarchical design and parallel processing capabilities accelerate training, 
enabling scaling to massive datasets and model sizes. 140,141 These features 
make Transformers the preferred architecture for building flexible and scalable 
LLMs. 

Mainstream LLM architectures. There are mainly four structures of lan- 
guage models based on the Transformer architecture: encoders (like BERT 59 ), 
causal decoders (like GPT 13 and LLaMA 142 ), prefix decoders (Prefix-LM 71 ), 
and encoder-decoders (like Google T5 72 ). Although encoder structures were 
widely used in earlier models, they have gradually been replaced by the latter 
three due to their limited generative capabilities and difficulty in scaling to large 
sizes. These structures support everything from zero-shot learning to large- 
scale knowledge integration.

(1) Causal decoders utilize unidirectional attention mechanisms, 
ensuring that each output can only access previous outputs to main- 
tain causal relationships during generation. Their advantage lies in 
generating natural, fluent, and consistent text, often used in chatbots, 
story continuation, and other tasks.

(2) Prefix decoders combine a fixed prefix with a freely generated suffix. 
The prefix part uses bidirectional attention, while the suffix part is 
freely generated. Prefix decoders allow for more flexible content gen- 
eration within a given contextual framework, suitable for conditional 
generation tasks.

(3) Encoder-decoders: this classic structure includes an encoder to pro- 
cess input text and generate intermediate representations and a 
decoder to produce output text based on these representations. Its 
advantage is in effectively handling complex input-output relation- 
ships, although it requires extensive data for training.

Pretraining strategies. Pretraining strategies involve training models 
on vast amounts of unlabeled data before learning specific tasks. 143 

This step is crucial for LLMs, as they rely on learning general 
language patterns and structures from a broad range of texts. Different 
pretraining strategies focus models on various linguistic capabilities, 
such as grammar comprehension, semantic extraction, or text generation. 
Currently, mainstream LLMs like the GPT series and T5 primarily use au-

Figure 2. Overview and development of foundation
models

toregressive pretraining approaches. In the 
autoregressive framework, the prediction 
content can vary, further divided into two cat- 
egories: language modeling and denoising 
autoencoding.

(1) Language modeling: the most common 
autoregressive pretraining strategy, 
aiming to predict the next word given 
the context. This strategy captures the 
natural sequence in language genera- 
tion, with models learning to generate 
subsequent words by observing previ- 
ous ones. Models trained this way 
typically exhibit strong generative capa- 
bilities, as demonstrated by the GPT- 
series 13 models in tasks like natural 
language generation, continuation, and 
dialog generation.

(2) Denoising autoencoding: a strategy 
whereby input data are intentionally cor- 
rupted and the model is tasked with 
restoring the original data. Many LLMs 
implement denoising autoencoding au- 
toregressively, such as GLM, 144 Google 
T5, 71 and BART. 145 Some efforts also

combine both strategies, such as UL2, 146 which considers language 
modeling as a type of denoising autoencoding under a masking 
strategy.

Given the effectiveness and scalability of language modeling, mainstream 

LLMs continue to primarily use this approach, such as GPT, 13 LLaMA, 142 and 
QWen. 147 

Fine-tuning and alignment. Fine-tuning adapts a pretrained language 
model to specific tasks or aligns it with specific needs. However, due to the large 
number of parameters, the complete training process requires substantial 
computational resources. Parameter efficient fine-tuning (PEFT) 148 significantly 
reduces training costs and time by focusing on a small subset of parameters. 
Various methods support this process, including adapter techniques that add 
trainable layers to the model, prefix tuning that guides outputs by adjusting 
input prompts, and low-rank adaptation methods that optimize by adjusting 
the rank of parameter matrices. Meanwhile, alignment techniques ensure 
that the model’s responses comply with human values and preferences, crucial 
for generating outputs that meet user expectations and ethical standards. Key 
methods in this field include reinforcement learning from human feedback 
(RLHF), 149 effectively aligning model behavior with human values by incorpo- 
rating human feedback into the training process. 

Applications of LLMs. LLMs, despite their impressive capabilities, face chal- 
lenges in accuracy, knowledge updates, and interpretability. To address these 
issues, frameworks such as prompt learning, knowledge enhancement, and 
tool learning have been developed. Prompt learning adapts LLMs to specific 
tasks by using clear instructions, with advanced methods like CoT 128 mimicking 
human reasoning through incremental steps. However, relying solely on LLMs’ 
internal knowledge often leads to inaccuracies, outdated information, and 
limited transparency. Knowledge enhancement, such as retrieval-augmented 
generation (RAG) 150 and knowledge graphs, improves accuracy and domain- 
specific knowledge by integrating external resources. Tool learning 151 further 
enhances LLMs by enabling dynamic interaction with external tools, improving 
problem-solving abilities and overall performance. 

The development of multimodal FMs. With the rapid advancement of AI, 
multimodal FM (MFM) technology has become a popular topic in both research 
and applications. MMFMs are capable of processing and understanding various 
types of data (such as text, images, audio, and video). 64–66 By integrating

REVIEW

6 The Innovation 6(6): 100948, June 2, 2025 www.cell.com/the-innovation

w
w
w
.th

e-
in
no
va
tio

n.
or
g

http://www.thennovation.org
http://www.thennovation.org


information from different modalities, they generate more comprehensive and 
accurate insights. This capability provides a robust data foundation and cogni- 
tive support for decision intelligence. For instance, in business scenarios, multi- 
modal models can analyze customer feedback (text), product images (visuals), 
and market trends (time-series data), offering decision-makers a holistic view of 
the market. 

Model architecture. The architecture of MFMs is often based on Trans- 
formers, known for their flexibility and efficiency. However, as research has 
deepened, various architectures have been proposed to accommodate 
different types of data and tasks. Primary model architectures include the 
following.

(1) Transformer-based encoder: in multimodal models, the encoder is a 
core component that extract features from diverse input forms like 
text, images, and audio. 152 Models like Vision-and-Language Trans- 
former (ViLT) 153 directly integrate visual and textual information, 
enhancing the understanding of multimodal inputs.

(2) Sequence generation model: this architecture is typically used for 
generation tasks, such as image captioning and dialog systems. 
The model generates coherent, contextually relevant outputs using 
contextual and historical information. 83,154

(3) Diffusion model: recently, diffusion models have gained attention for 
generating high-quality samples. Unlike traditional generative models, 
diffusion models generate data through a gradual denoising process, 
offering new possibilities for multimodal generation tasks. 155,156

(4) Autoregressive decoder: in combination with encoders, autoregres- 
sive decoders generate output sequences step by step. This mecha- 
nism is especially suitable for tasks like dialog generation and text 
completion, as it utilizes historical content as context. 157,158

(5) Graph neural network (GNN): when handling data with graph struc- 
tures, GNNs can effectively model the relationships and structural in- 
formation within multimodal data, suitable for applications like social 
networks and knowledge graphs. 159,160

(6) Hybrid architecture: some models combine CNNs with Transformers, 
enhancing visual feature extraction while using Transformers to inte- 
grate information for a better understanding of complex data. 161–164

(7) Generative adversarial network (GAN): GANs can be used in multi- 
modal generation tasks to produce high-quality images or text, 
leveraging adversarial training to increase the realism of generated 
results. 165,166

(8) Multitask learning framework: by handling multiple tasks simulta- 
neously, models can share knowledge, improving generalization and 
robustness, which is beneficial in complex applications requiring 
multimodal understanding. 167,168

These diverse model architectures play a significant role in enhancing the 
performance and application range of MFMs, enabling them to better address 
complex real-world tasks. 

Key technologies. Several key technologies are essential in the develop- 
ment of MFMs, boosting model performance and applicability.

(1) Alignment techniques: effective alignment techniques ensure consis- 
tency across different modalities in the feature space. Through align- 
ment, models can better understand relationships, such as between 
images and their descriptions, enhancing generation and recognition 
capabilities. Common alignment methods include contrastive 
learning and attention mechanisms. 169,170

(2) Pretraining data collection: the richness and diversity of data are 
crucial for model performance. During pretraining, models are typi- 
cally exposed to large amounts of labeled and unlabeled data from 

social media, image libraries, and open-source publications 
across multiple domains, enabling them to learn comprehensive 
knowledge. 165,171

(3) Self-supervised learning and model optimization training: self-super- 
vised learning allows models to learn autonomously from unlabeled 
data, enhancing performance in downstream tasks. Model optimiza- 
tion training focuses on improving performance through hyper- 
parameter tuning and architectural refinement. 172,173,174

(4) Downstream task fine-tuning: after pretraining, models need to be 
fine-tuned for specific downstream tasks. This process typically 
uses labeled datasets to improve model accuracy and efficiency on 
specific tasks. 155,175

(5) Modality fusion techniques: by effectively merging data from different 
modalities, models enhance multimodal information understanding, 
often using attention mechanisms or feature concatenation. 176,177

(6) Knowledge distillation: transferring knowledge from larger models to 
smaller models reduces computational overhead and improves effi- 
ciency, allowing models to run effectively in resource-limited envi- 
ronments. 178,179

(7) Incremental learning: this allows models to update dynamically with 
new data, avoiding retraining from scratch, and is crucial for handling 
dynamic data streams. 180,181

The combination and innovation of these key technologies provide strong
support for the practicality and flexibility of MFMs, facilitating their broad appli-
cation in various fields.

Representative models. Currently, a variety of representative MFMs come
from industry or academia.

(1) Models from industry: examples include OpenAI’s GPT-4 13 and 
Google’s MUM, 182 which leverage powerful computing resources 
and dedicated hardware, typically deployed on cloud platforms for 
real-time processing of large user requests. These models focus on 
scalability and stability for production use cases, such as virtual 
assistants, content generation, and data analysis.

(2) Models from academia: examples include CLIP 14 and DALL-E, 183 pri- 
marily aimed at research with a focus on theoretical exploration 
and algorithmic innovation. Research models often operate on 
smaller hardware, prioritizing algorithm development over large-scale 
computation.

(3) Computer and hardware differences: industrial FMs usually rely on 
extensive distributed computing architectures and specialized hard- 
ware (e.g., TPU or GPU) to process vast amounts of data and support 
efficient inference. In contrast, models from academia are more likely 
to operate on smaller hardware, emphasizing algorithmic novelty 
rather than massive computational scale. 64,184

MFMs have achieved remarkable progress in recent years, driving develop- 
ment across various fields of AI. From model architecture to key technologies 
and typical applications, MFMs demonstrate tremendous potential and flexi- 
bility. With advancements in computational power and ongoing optimization 
of algorithms, this field is poised to see broader applications and theoretical 
breakthroughs in the future.

Optimization of FM training, fine-tuning, and deployment 
FMs require the use of high-performance GPU clusters during the training 

phase, which can take weeks or months to train. During the fine-tuning process 
of an FM, it is necessary to consider the optimization of hyperparameters 
and prevent overfitting issues. During the deployment process of an FM, it is 
necessary to adjust the model size according to different computing resources 
and ensure timely response. This section first introduces the optimization strat- 
egy for training FMs, then introduces the main optimization methods for fine- 
tuning FMs, and finally introduces the inference optimization strategy for FMs. 

Optimization of FM training. FMs typically utilize massive amounts of 
data and employ unsupervised pretraining methods. From the architecture of 
pretrained models, they can be divided into three categories, including encoder 
only, decoder only, and encoder-decoder forms. FMs based on the encoder-only 
architecture are generally modeled using masked language models and include 
BERT 59 and RoBERTa. 185 FMs based on decoder only structure are generally 
trained using autoregression, which maximizes the prediction probability of 
the next word element given an input sequence and include GPT series, 60,61,69 

PaLM, 186 and LLaMA. 142,187 The model based on the encoder-decoder hybrid 
structure adopts the encoder-decoder modeling method, which integrates the 
first two pretraining methods. It randomly occludes a character sequence 
and then restores the occluded content through autoregression. Representative 
models are the T5 71 and BART 145 models.
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Optimization of FM fine-tuning. Parameter-efficient fine-tuning is a suitable 
training method for FMs to adapt to downstream tasks. Therefore, efficient fine- 
tuning approaches have become one of the hot topics in recent years. 188 LoRA 
(low-rank adaptation) is one of the best efficient fine-tuning paradigms. 189 It 
works by introducing low-rank approximations for the matrices that will be 
used to adapt the model for specific tasks. Instead of directly modifying the orig- 
inal weights of the model, LoRA applies a transformation using these low-rank 
matrices to the outputs of affected layers. A series of improvements based on 
LoRA have further enhanced the performance and applicability of LoRA. 
QLoRA (quantized low-rank adaptation) significantly reduces memory usage 
while preserving fine-tuning performance. It enables the fine-tuning of a 65-B 
parameter model on a single 48-GB GPU, which is a substantial reduction in 
memory requirements compared to traditional 16-bit fine-tuning methods. 190 

LoRA-Flow 191 employs dynamic fusion weights at each generation step for 
FMs in generative tasks. The method calculates fusion weights using a softmax 
function applied to a gate mechanism, which allows for more flexible adaptation 
during the generation process. This approach has been shown to outperform 

standard LoRA in terms of parameter efficiency and performance. MoSLoRA 
(mixture-of-subspaces LoRA) 192 extends the concept of LoRA by decomposing 
the weights into two subspaces and mixing them to enhance performance. This 
method is equivalent to employing a fixed mixer to fuse the subspaces. 
MoSLoRA jointly learns the mixer with the original LoRA weights, leading to 
consistent improvements over standard LoRA across various tasks, including 
commonsense reasoning, visual instruction tuning, and subject-driven text-to- 
image generation. 
LoRA, QLoRA, and adapter-based methods each have distinct characteristics 

in terms of parameter efficiency, training speed, and task performance. LoRA 
significantly reduces the number of trainable parameters through low-rank 
decomposition, achieving high parameter efficiency and relatively fast training 
speed while performing close to full fine-tuning on most tasks. QLoRA builds 
on LoRA by introducing quantization, further improving parameter efficiency 
and achieving very fast training speeds. However, due to potential minor preci- 
sion loss from quantization, its task performance is slightly lower than LoRA, 
although it still performs well in resource-constrained environments. Adapter- 
based methods insert small adapter modules and train only a small number 
of parameters, resulting in moderate parameter efficiency and relatively fast 
training speeds, though typically slower than LoRA. They perform close to full 
fine-tuning on most tasks but may slightly underperform on some complex 
tasks compared to LoRA. Overall, LoRA and QLoRA excel in parameter efficiency 
and training speed, while adapter-based methods offer advantages in flexibility 
and task adaptability. The comparison of LoRA, QLoRA, and adapter-based 
methods in terms of parameter efficiency, training speed, and task performance 
is shown in Table 1. 

Optimization of FM deployment. Model compression and quantization are 
essential strategies for downsizing FMs without drastically affecting their per- 
formance. This process encompasses techniques such as pruning, which 
eliminates less critical neurons to streamline the model, 193 and knowledge 
distillation, 194–197 a method that transfers the learned knowledge from a com- 
plex model to a more compact one. Additionally, quantization plays a pivotal 
role by reducing the numerical precision required for model calculations, 198 

leading to a substantial decrease in model size and a consequent acceleration 
of inference times. These optimizations are crucial for making FMs more effi- 
cient and deployable in resource-constrained environments. The optimized 
model has shown quite impressive performance under limited resources. 
SANA-0.6B, a model variant, is competitive with modern giant diffusion 
models like Flux-12B, being 20 times smaller and over 100 times faster in 
throughput. It can also be deployed on a 16-GB laptop GPU, taking less

than 1 s to generate a 1,024 × 1,024 resolution image. 199 LLaMA 3.2 3B is 
designed to be optimized for edge computing and mobile devices, supporting 
128k token contexts, which is exceptional in the industry. It excels in tasks 
such as summarization, instruction following, and text rewriting on device- 
side use cases. It represents a step forward in making FMs accessible and 
efficient for a wide range of applications, particularly those that require on-de- 
vice processing and privacy. 200,201 

With the development of FMs, they are playing an increasingly important role 
in intelligent decision-making. We highlight the advantages of FMs in decision- 
making as follows.

(1) Strong predictive capabilities: through deep learning and large-scale 
data training, FMs can capture complex patterns and nonlinear rela- 
tionships in data, thereby improving the accuracy of predictions. For 
example, in the financial field, FMs can predict market trends; in the 
medical field, they can assist in diagnosis and formulating treatment 
plans.

(2) Cross-domain knowledge integration: FMs possess the capability to 
integrate knowledge from diverse domains, offering interdisciplinary 
decision-making support. For instance, in climate change research, 
FMs can integrate multidisciplinary data from meteorology, eco- 
nomics, and sociology, aiding in the formulation of comprehensive 
strategies to address the issue.

(3) Human-machine collaboration: traditional decision-making models 
are usually used as a tool to assist human decision-making, with 
limited interaction methods, while FMs are able to collaborate with hu- 
mans through natural language interactions (such as ChatGPT) to 
provide more intuitive and flexible decision support.

THE PARADIGM OF FM-BASED DECISION-MAKING AND KEY 
TECHNOLOGIES 
Advanced decision-making paradigms leverage a combination of sophisti- 

cated models and frameworks to enable intelligent agents to make effective 
choices in dynamic environments. AI agents tend to exploit the rules and 
experience consolidated in the LLM to facilitate more efficient decision-mak- 
ing. High-level RL models learn policies through trial and error, optimize 
long-term rewards across various tasks, and decompose decision-making 
into easy-to-implement steps. 202,203 For example, multi-agent systems and hi- 
erarchical RL architectures have emerged to address more complex coordina- 
tion and task decomposition scenarios. Additionally, multimodal foundation- 
based decision-making integrates diverse input modalities—such as vision, 
language, and sensory data—into a unified decision-making process. By 
combining different types of information (e.g., visual cues and textual descrip- 
tions), multimodal decision-making approaches enhance robustness and 
adaptability, allowing agents to tackle tasks that require nuanced understand- 
ing or reasoning. 
This section systematically discusses existing advanced decision-making 

paradigms. Integrating FMs and advanced decision frameworks brings AI 
closer to human-like decision-making, where cognitive flexibility and efficiency 
are paramount in uncertain, real-world situations.

Important roles of FMs in IDM 

In the decision-making process, the FM can empower new decision-making 
paradigms. On the basis of the FM acting as an agent, the FM can also serve as 
an environment and its designer, encoder, conditional generation representation 
module, and human-computer interactor. The use of new decision-making par- 
adigms can further enhance the generalization and decision-making ability of 
foundation large-scale models in various fields. FM-based IDM technologies 
generate optimal policy, action, planning, and schemes. The decision-making 
paradigm can be divided into three modes. In the FM agent module, the FM 

can serve as agent including planner, perceiver, decision-maker, and actor, as 
shown in Figure 3. 
In the FM Environment and Designer module, the FM can serve as a target for 

action execution, a part of the environment, or a bridge for environment state 
transition, enhancing the effectiveness of strategies. In FM Encoder, the FM 

is used to generate state encoding or optimize policy encoding. In FM

Table 1. Comparison of optimization methods for foundation models

Method
Parameter
efficiency

Training 
speed Task performance

LoRA high faster close to full parameter tuning

QLoA very high very fast slightly lower than LoRA

Adapter- 
based

medium faster close to full parameter 
fine-tuning
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Conditional Generative Presentation module and FM Interactor Human Ma- 
chine, the FM is used for conditional generation and human-computer interac- 
tion, respectively. The multiple decision-making paradigms based on the FM 

effectively promote the adaptability of decision-making modes and different 
application environments. Multimode FM-based decision-making paradigms 
optimize greatly the performance and generalization of decision-making. 
On the basis of FM-based agents, the FM can act as environment and 

designer, encoder, and conditional generative and human-machine interactor. 
When the FM acts as environment and designer, the action obtained by policy 
is executed into the FM to update the FM’s state, and the FM designs the 
reward, transition, state, and environment. The FM encodes the state to form 

extracted representation and policy when the FM as an encoder, i.e., the FM for- 
malizes the state information. Combined with conditions, the FM uses the task, 
state, and prompt to output behavior generation and world generation, as well 
as action content when the FM as a conditional generative. As a human-ma- 
chine interactor, the FM receives a human’s command including dialog format 
and then outputs policy and action to interpret the human’s command. The mul- 
tiple FM decision-making paradigm optimizes greatly the performance of deci- 
sion-making and extends it to the fields of natural sciences and social sciences. 
The basic content and various comparative attributes of three types of FM are 
shown in Table 2, which includes the main model technologies and application 
domains. 

FM as agent. Task and its prompt are input into FM planner and then 
generate the corresponding policy 1,2, … n to select the optimal action to 
execute. As perceiver, the FM collects multimodal information including text, 
image, audio, and video from multiple environment 1,2, … n to formalize 
the current state. Furthermore, the FM as decision-maker 55,204 uses the state 
and state prompt to obtain the optimal policy and corresponding action, then 
the action is executed into the environment, and a reward feedback of a cur- 
rent state is generated to optimize the policy of FM-based decision-making. In 
addition, the FM as actor uses tools, such as application programming inter- 
faces (APIs), Web GPT, or Python, to generate action presentation and 
execute it in the environment according to the current state. 205 FM-based

IDM agents improve the decision scenario and paradigm to improve deci- 
sion-making ability. 

FM as environment and designer. In the FM-based non-agent module, the 
FM can act as the environment and designer 36 to formalize state information 
into the MDP including state transition, reward function, policy, and action. 
the FM can serve as a target for action execution, a part of the environment, 
or a bridge for environment state transition, enhancing the effectiveness of stra- 
tegies. 109 Furthermore, the FM can design and formalize the environment state 
format and action space to improve policy generation. For example, the fine-tun- 
ing parameters 206–208 matrix of FM can be regarded as an environment and 
trained by the fine-tuning methods, which can act as an environment state to 
generate corresponding policy and action to update FM parameters. As an envi- 
ronment designer the FM can design the corresponding state encoding, 209 

reward function, and state transition function 210 to formalize the environment, 
i.e., the FM can be used to formalize its parameters, as shown in Figure 3. In 
addition, as a conditional generative presentation module, 36 the FM can be 
used to output behavior generation (i.e., actions) and world models generation 
(i.e., environment dynamics) by combining the task description and condi- 
tion. 204 Furthermore, the generation model can be applied to text or image 
data to model behaviors, environments, and long-term trajectory. 204,211 The 
behavior and world model can be regarded as the policy and generate the cor- 
responding action and MDP trajectory. Generated behavior and world model 
can be applied to execute and formalize the environment and outline the envi- 
ronment conditional generation information. Also, in the FM-based encoder 
module, the FM can be used to encode the environment state information 
into extracted representation information to generate policy and action. The 
FM encoder module can be regarded as the multimodal encoder of environ- 
mental data; for example, the video data can convert to audio data and image 
data, where the audio data can be encoded into corresponding encoding 
information. Non-numerical state information is encoded as numerical vector 
information; for example, the FM encodes the text or image information into 
vector form for more convenient input into the large model. Vectorization 212 

is an excellent method that can convert non-numerical information into vectors.

Figure 3. The critical roles that FM can play for intelligent decision-making
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Thus, the encoder module is the tool that converts state information into 
another form for the generation of efficient policy and action. The FM is the 
bridge of the state representation form transition, encoding the state to form 

a more convenient form for computer input. 
FM as human-machine interactor. In the FM-based human-machine 

interactor module, the FM can generate the corresponding policy, action, and 
interpretation according to the command of the human by the form of dialog. 204 

The intelligent interaction between human and machine can be realized by the 
FM via the dialog based on text, image, and audio. Thus, the FM can be regarded 
as the bridge of interaction between human and machine, meaning that the FM 

can be installed in robots or unmanned vehicles 213 to provide intelligent 
answering of questions. The multiple decision-making paradigms based on 
FM effectively promote the adaptability of decision-making modes and different 
application environments. Multimode FM-based decision-making paradigms 
optimize greatly the performance and generalization of decision-making.

Intelligent decision-making with LLM-empowered AI agent 
IDM is undergoing a transformative shift with the advent of AI agents em- 

powered by LLMs. Unlike traditional decision-making methods, which often 
rely on handcrafted rules, planning from scratch, or scheduling algorithms, 
LLM-powered agents capitalize on large-scale pretrained models to process 
and respond in real time to diverse and dynamic inputs. These agents not 
only excel at understanding complex tasks and contexts but also facilitate 
knowledge transfer and enable rapid adaptation of strategies across various 
domains. A key advantage of LLM-based agents is their ability to swiftly 
adjust decisions and optimize actions in response to changing environments 
without requiring extensive retraining. Through mechanisms like CoT, 214 LLM 

agents offer highly transparent and interpretable decision-making processes, 
breaking down complex reasoning into clear steps. This capability allows 
them to outperform traditional decision models, particularly in complex, dy- 
namic settings, by providing a more adaptive and transparent decision-mak- 
ing framework, ideal for scenarios demanding rapid response and real-time 
decision-making. 

Techniques for enhancing decision-making capabilities of AI agents. 
LLM-powered AI agents significantly enhance the decision-making capabilities 
by leveraging advanced techniques such as RLHF, RAG, search algorithms, and 
advanced reasoning methods. RLHF has proven to be highly effective in align- 
ing LLMs with human values. 149,187,215–217 Typically, these methods rely on 
human-annotated preference datasets to train a reward model, which is 
subsequently used to guide the training of LLMs through RL. The traditional 
RLHF approach employs the PPO algorithm 218 to fine-tune LLMs for alignment, 
although it is often criticized for its significant resource demands. As a more 
resource-efficient alternative, recent approaches focus on directly optimizing 
the LLMs themselves. 219–224 RAG improves knowledge acquisition by retrieving 
relevant external information, enabling LLM agents to generate more accurate, 
context-sensitive responses based on real-time data. This is particularly benefi- 
cial for tasks requiring up-to-date knowledge or complex cross-domain deci- 
sion-making. 150 Search algorithms, including Beam Search and Monte Carlo 
tree search (MCTS), 225,226 enhance decision-making efficiency by exploring 
multiple candidate solutions or simulating various decision paths, making 
LLM agents more robust in complex, long-term decision tasks such as game 
theory or strategic planning. 227 Lastly, advanced inference methods like 
CoT, 214 ToT, 129 and Graph of Thought (GoT) 228 deepen reasoning capabilities. 
CoT improves decision transparency by breaking down complex reasoning

steps, while ToT and GoT enable agents to handle intricate, multistep decision 
tasks by structuring information hierarchically or graphically. Together, these 
technologies allow LLM-powered agents to make adaptive, transparent, and 
informed decisions in a wide range of dynamic environments. 

Application scenarios of AI agents. LLM-powered agents have a broad 
range of applications across fields such as strategic reasoning, 229 game the- 
ory, 230 real-time decision-making, 231–235 and cross-task knowledge trans- 
fer, 236–241 demonstrating their strong capabilities in complex environments. 
In strategic reasoning, LLM agents can predict opponents’ actions in dynamic 
and highly uncertain environments and adjust their strategies in real time, 
particularly in multi-agent game settings where the integration of game theory 
enhances decision-making effectiveness. For example, in complex strategy 
games like StarCraft, LLM agents can not only predict enemy movements but 
also adapt their strategies to gain an advantage in the game’s complex dy- 
namics. Furthermore, as LLMs are increasingly applied in real-time decision- 
making, testing platforms such as LLM-PySC2 231 and SC-Phi2 232 have become 
essential tools for evaluating LLM agents’ performance in macro-level decisions 
and tactical collaboration. These platforms not only assess agents’ abilities in 
long-term strategic decisions but also address challenges like multimodal 
observation and real-time feedback, advancing LLM research in complex deci- 
sion-making contexts. In deductive reasoning tasks, LLM agents also exhibit 
impressive performance. For example, in Werewolf, LLM agents can simulate 
human-like deception, trust-building, and strategic communication in virtual 
interactions, enhancing adaptability in complex and dynamic environ- 
ments. 234,235 In creative tasks, LLMs have demonstrated their ability to generate 
novel and creative definitions in games like MineCraft, 242–244 and Balderdash, 245 

showcasing their strategic logic and innovative thinking in solving complex, 
open-ended problems. These applications not only highlight the potential of 
LLMs in reasoning and creative tasks but also reveal their versatility and broad 
applicability across diverse domains. LLM agents’ practical applications extend 
to fields such as autonomous driving 239 and robotics, 238,240 further proving their 
strength in real-time decision-making and strategic reasoning. In autonomous 
driving, LLM agents process real-time data from vehicles and their surroundings 
to quickly identify potential risks and formulate emergency strategies, providing 
efficient and accurate decision support. 239 In robotic tasks, LLMs need to 
receive human natural language instructions and translate them into specific 
actions that the robot can execute to complete the assigned task. This requires 
LLMs to effectively bridge language understanding with the robot’s control sys- 
tem. 238,240 In complex multi-agent environments, LLM agents demonstrate 
unique advantages in both cooperation and competition. For instance, the 
TMGBench platform 246 tests LLM agents’ strategic reasoning and decision- 
making abilities across various game types, advancing the application of 
rational decision-making in competitive scenarios. Additionally, social reasoning 
games powered by LLMs are becoming increasingly popular in AI research, with 
platforms like AdaSociety 247 and AI Metropolis 248 enabling LLM agents to simu- 
late and optimize complex social dynamics and collaborative tasks, improving 
decision-making efficiency and system adaptability. LLM agents’ applications in 
economic decision-making are also expanding. By simulating real-world eco- 
nomic interactions, LLM agents help researchers better understand and predict 
human behavior in economic decisions, advancing research in economics, so- 
ciology, and related fields. 236,237 Overall, the development of LLM-agent technol- 
ogy and its diverse applications across complex domains not only enhances 
real-time decision-making capabilities but also drives innovation in strategic 
reasoning, social reasoning, creative thinking, and more.

Table 2. FM paradigm conceptual framework: Mapping functional roles, core modeling technologies, cross-domain applications, and comparative merits and flaws

FM functions Main modeling technologies Application domains Merits Flaws

Agent LLM chain of thought (CoT); 
reinforcement learning; 
expert rules

Robotics, financial trading, etc general-purpose decision-making 
to complex environments, 
real-time response

low inference efficiency, safety verification, 
and alignment with human values, quality, 
and latency, issue in generation

Environment Generative simulation (GenSim) Urban planning, medical 
simulation, etc

low-cost generation of diverse 
scenarios, pretraining for 
high-risk tasks at lower cost

significant Sim2Real gap, high complexity 
in multimodal dynamic modeling

Interactor Retrieval-augmented 
generation (RAG)

Educational assistance, 
intelligent customer service, etc

natural language interaction, 
user-friendly, personalized 
demand matching

high hallucination risk, privacy protection, 
and ethical alignment
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Limitations and challenges of AI agents. Despite the remarkable perfor- 
mance of LLM-powered agents across various domains, several chal- 
lenges and bottlenecks remain. One significant limitation is their ability 
to process multimodal data, especially when integrating signals from im- 
ages, audio, or sensors. As LLMs are primarily designed for text inputs, 
they often struggle with nonsymbolic data, which can impede decision- 
making in these contexts. Moreover, LLM agents face scalability and 
real-time decision-making challenges, particularly in low-level control 
tasks. While adept at complex reasoning, they often fall short in dynamic 
environments that demand precise, immediate responses. In high-fre- 
quency, low-latency scenarios, delays in decision-making can undermine 
system responsiveness and efficiency. Safety remains another critical 
concern, especially in high-risk applications. Without proper alignment 
with human values and safety protocols, LLM agents may make unin- 
tended and potentially harmful decisions. Ensuring that LLM agents 
make sound, secure choices in complex environments and maintain stabil- 
ity under uncertainty will be essential for advancing AI-agent technologies.

Intelligent decision-making with advanced deep RL 
Vanilla RL treats the decision-making environment as the typical Markov de- 

cision process with complete elements that seldom belong in the real world. 
The several remaining bottlenecks concern efficiency, generalization, or scal- 
ability in a technical sense. Meanwhile, the success of RL’s problem-solving 
heavily relies on reward engineering, which is based on nontrivial expert knowl- 
edge. To this end, some high-level RL topics are being investigated to close the 
theoretical gap and make deep RL more tractable in practice. Overall, these 
topics take sample efficiency, policy transferability, credit assignment, incom- 
plete environment, and safety into consideration. The different paradigms of 
RL are shown in Figure 4. 

Offline RL. Offline RL 34 refers to learning optimal policies completely from a 
static dataset collected from interactions with environments, which discards er- 
ror-trial mode in online interactions. In other words, offline RL aims to extract 
and generalize knowledge inside the historical dataset and induce policies per- 
forming well under similar conditions. The practical need for offline RL arises 
from the infeasibility or risk of exploration in RL in risk-sensitive fields (e.g., mil-

lions of automatic transactions in financial markets). It also involves reusing 
valuable and expensive datasets, thereby reducing data-collection costs. 
Some commonly used strategies to develop offline RL include (1) behavior reg- 
ularization to constrain the learned policy close to the behavior policy and 
reduce the risk of encountering out-of-distribution (OOD) states 249,250 ; (2) 
Q-learning with uncertainty quantification and offline policy evaluation to sup- 
press overestimation of values in less visited regions of the dataset for safety 
control 251,252 ; and (3) implicit policy optimization that employs some sequence 
or generative modeling to learn expressive decision-making such as decision 
transformer or diffusion policies. 253,254 Recent advancements provide a less 
restrictive in-support constraint for policy learning 35 and value learning, 255 facil- 
itating policy optimization within the support of the behavior policy and deliv- 
ering state-of-the-art performance. Despite its promise, offline RL still encoun- 
ters practical challenges that need to be resolved, including the existence of 
OOD states and actions, 256,257 the diversity and quality of static datasets, 258 

and robust policy evaluation techniques. Even so, some challenges worth 
noting lie in versatile approaches to locating meaningful subgoals, more effi- 
cient credit assignment, design of subgoal exploration strategies, and good co- 
ordination across hierarchical actors. 

Meta RL. Meta RL is a paradigm considered in the distribution over MDPs, 
and the agent is trained to adapt rapidly to unseen but similar tasks by 
leveraging past experience. Intuitively, the motivation is to create a generalist 
agent that learns to learn in a generalizable way and avoids training from 

scratch in deployment. Hence, the primary technique in meta RL is to encode 
meta-knowledge for fast adaptation or infer the task-specific representation 
from a few episodes. The mentioned trait makes meta RL suitable for changing 
environments, such as robotic control in diverse terrains and autonomous 
driving in various scenarios, as it does not suffer from computational cost 
and sample efficiency in deployment. Some existing typical methods are based 
on either optimization 17,259 or the context 45,260–262 approaches. MAML 17 is an 
optimization-based method that seeks a meta policy that can be fine-tuned in a 
gradient update way to adapt to new MDPs from support episodes. PEARL 260 is 
a context-based method that learns task embedding to amortize task-specific 
policies. However, meta RL is computationally and sampling intensive in 
meta-training phases, and its generalization heavily relies on the task

Figure 4. Different paradigms of reinforcement learning (A) Offline RL is a method that learns optimal or near-optimal policies using only existing historical data with little or no 
online interaction. (B) Meta RL enables agents to have the ability of “learning to learn” and quickly adapt when facing new tasks. (C) Hierarchical RL simplifies the learning process by 
introducing a hierarchical structure to decompose complex tasks into high-level “meta-actions” or “sub-tasks” and low-level specific execution policies. (D) Multi-agent RL is a 
reinforcement learning paradigm that studies multiple agents learning optimal policies through collaboration or competition in an environment.
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distribution design, similar to domain randomization. Identified as a promising 
direction for creating adaptable agents, meta RL requires further advancements 
in task distribution design, efficient meta-training, and robustness to ensure 
broader applicability. 

Hierarchical RL. In complex decision-making, there are clear structures in 
the task. Hierarchical RL (HRL) manages the decision-making process in 
such a structure, which decomposes the task into hierarchical levels. In specific 
high-level policies, subgoals for low-level policies are devised to execute and 
achieve these subgoals. In this way, a complex long-horizon task is transformed 
into a series of manageable ones. For example, in an autonomous driving sys- 
tem, the navigation agent is at a high level to reach destinations and orders the 
controllers as low-level policies to enable specific steering. These decomposi- 
tions allow for modular policy learning and foster sample efficiency by speci- 
fying diverse combinatorial skills across different tasks. Meanwhile, HRL bene- 
fits from temporal abstraction in tasks where decision-making must span 
varying time scales. Commonly used approaches involve different options 
frameworks, where options are temporally extended actions with their own pol- 
icies and termination conditions. For example, the MAXQ framework recursively 
decomposes the value function into simpler, hierarchical components. 263 Simi- 
larly, such an option can be extended to DQN to obtain H-DQN. 264 HRL also im-

proves exploration efficiency by allowing the agent to explore subgoals rather 
than actions and resembles a human being’s strategic planning in pursuing a 
long-horizon goal. 

Multi-agent RL. MARL refers to the case when multiple autonomous agents 
are involved in learning and interacting with a shared environment to achieve 
cooperative, competitive, or mixed goals. In this case, agents are not completely 
isolated in decision-making, and they must adapt according to not only environ- 
mental dynamics but also other agents’ strategies. MARL can meet compli- 
cated real-world domains like swarm robots, real-time strategy games, 265 

distributed control systems, 266 and intelligent transportation 267 well. However, 
MARL also poses additional complexities, requiring specialized techniques to 
handle interactions, communication, resource partition, and strategic deci- 
sion-making. These agents might reserve conflicting objectives and mandate 
swarm IDM. Formulated as stochastic games or Markov games, MARL aims 
to derive a robust solution in environments where agents can coordinate, 
compete, or both. Consequently, agents need to handle partial observability 
and diverse multi-agent interactions and seek decentralized learning in practice. 
The commonly used strategy in MARL is “centralized training, decentralized 
execution” (CTDE), which enables agents to learn policies from the shared infor- 
mation during training phases while acting independently during execution. The

Figure 5. Advanced intelligent decision-making paradigms with foundation models (A) Vision-Language-Action (VLA) integrates the hierarchical reasoning of LLM and the 
perceptual capabilities of vision models to decompose high-level tasks into executable subtasks, addressing computational and data bottlenecks in complex decision-making tasks 
caused by scenario diversity and partial observability. (B) Learning from Videos (LfV) leverages large-scale, inexpensive online video datasets to transform raw video into structured 
transition trajectories for policy learning, enabling the training of generalist decision-making agents by exploiting diverse, real-world contextual information from noisy, uncurated 
videos. (C) Generative Simulation (GenSim) utilizes simulation environments alongside components such as prompt-guided task proposal modules and agent modules to create 
diverse decision-making scenarios and optimize adaptive policies, thus minimizing dependence on expensive real-world data for training agents in complex tasks like robotics and 
autonomous systems.
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independent learning strategy reduces MARL to multiple single-agent policies 
without a coordination mechanism during training phases and fails to handle 
nonstationary cases with other agents’ changing policies. 268 Value-based 
methods learn to decompose the joint value into individual players as the credit 
assignment for efficient cooperation. 31,269,270 Even so, some challenges still 
last, including the design of communication mechanisms, 271 the credit assign- 
ment, and environment nonstationarity. 
The past decade has witnessed several advances in deep RL’s theory, and 

some applications, particularly the mentioned high-level deep RL paradigms, 
improve the plausibility of deep RL in complex sequential decision-making. 
Nevertheless, scaling deep RL to more real-world scenarios is nontrivial and still 
faces some technique, safety, and efficiency bottlenecks. These originate from 

expensive interactions with environments, unstable policy-learning dynamics, 
and reward design. Fortunately, some recent AI agents and superior generative 
models have shown some promise in alleviating these limitations, e.g., world 
model approximation, 272 subgoal design, 273 and credit assignment in a tempo- 
ral and multi-agent sense. 274,275 FMs and high-level RL approaches are increas- 
ingly intertwined in large decision-making models for balancing efficiency and 
accuracy. As decision-making models scale, the synergy between FMs and 
RL becomes essential for achieving advanced intelligence.

Intelligent decision-making paradigms with advanced FMs 
In making sense of the neural scaling law in decision-making, we have to inev- 

itably cover sufficient decision-making scenarios for pretraining and meta- 
training. However, managing these processes can often be risky, particularly 
with robots that may engage in hazardous actions, creating a classic 
chicken-and-egg dilemma. In light of this challenge, collecting a diverse and 
high-quality dataset, developing a counterfactual predictor, and utilizing 
Sim2Real or Real2Sim2Real modules 276 appear to be effective strategies for 
addressing the limitations in decision-making scenarios. Overall, we provide 
an overview of the promising approaches for constructing the FDMM as shown 
in Figure 5. 

Learning from demonstrations and vision-language-action. A natural 
schema for decision-making in AI is learning from demonstrations (LfD), 277 

whereby extensive decision-making sequences guided by expert policies across 
diverse skills are structured for a model from which to learn. LfD leverages dem- 
onstrations as a rich source of supervision, providing examples of desired be- 
haviors in a given environment. The offline setup of LfD facilitates the applica- 
tion of probabilistic models to generate scenario-specific episodes, enabling 
context-dependent policy learning. These probabilistic frameworks allow for a 
nuanced understanding of variability and uncertainty in decision-making pro- 
cesses, thus supporting the development of robust policies for partially observ- 
able environments. However, a challenge arises in scaling this framework: as 
scenario diversity increases, the number of required interaction episodes grows 
exponentially, leading to significant computational and data requirements. This 
is further compounded by partial observability, where incomplete information 
hinders accurate policy derivation. Vision-language-action (VLA) multimodal 
FMs have emerged as promising alternatives to address these challenges. 
VLA models integrate the hierarchical reasoning capabilities of LLMs with the 
perception capabilities of vision models to tackle complex decision-making 
tasks. By leveraging language’s inherent structure, VLA models decompose 
high-level tasks into manageable subtasks. Techniques such as behavior clon- 
ing 278 are employed to directly map vision inputs (e.g., image or video tokens) to 
corresponding low-level execution actions. Notable instances include RT-2, 279 

UniPi, 280 and OpenVLA, 281 which showcase the utility of demonstrations in 
training generalist agents. These models capitalize on human decision-making 
priors encoded in language, utilizing demonstrations to refine their multimodal 
understanding and action execution capabilities. Over time, demonstrations 
become indispensable for downstream tasks, enhancing the models’ ability 
to generalize across diverse environments. However, VLA models face critical 
limitations, including reliance on large-scale VLA datasets and multimodal deci- 
sion-making episodes. This dependency restricts their scalability and general- 
ization potential in unseen scenarios, posing a significant bottleneck in realizing 
their full capabilities. Research must address these data and computational 
challenges to ensure broader applicability and robustness in real-world tasks. 

Learning from videos. High-quality and diverse demonstrations are 
essential for training robust decision-making agents but often require sig-

nificant time and financial investment to curate. To cultivate a generalist 
decision-maker, identifying cost-effective sources of episodes is para- 
mount. The Internet provides a rich repository of inexpensive videos that 
capture real-world interactions with objects, showcasing how the environ- 
ment itself functions as a generative model. This observation underpins 
learning from videos (LfV), 282,283 which leverages large-scale video data- 
sets to develop a comprehensive video FM capable of inferring implicit ac- 
tions. LfV focuses on transforming raw video data into structured transi- 
tion trajectories. With the help of techniques such as weak supervision 
and unsupervised learning, LfV annotates actions and rewards indirectly 
to reduce the reliance on labor-intensive manual labeling. This process en- 
ables the extraction of meaningful task demonstrations from uncurated 
and noisy datasets. The resulting episodes can then serve as datasets 
for policy-learning frameworks, bridging the gap between perception and 
decision-making. The advantage of the LfV paradigm lies in its ability to 
exploit fruitful affordable data available online, significantly lowering the 
cost of generating training episodes. Moreover, the variety of scenarios 
depicted in videos introduces rich contextual information that supports 
learning generalized policies for complex tasks. Key advancements 
include the use of self-supervised learning paradigms and contrastive 
techniques to address challenges in action segmentation and state repre- 
sentation. However, LfV faces notable limitations. The inherent partial 
observability of video data—where critical states may not be directly 
visible—hampers accurate policy derivation. Noise from irrelevant objects 
and environmental distractors can disrupt the learning process, leading to 
suboptimal trajectories. Furthermore, incomplete or imprecise action 
spaces pose another bottleneck, as videos may lack comprehensive 
coverage of all possible transitions within a task. Even the latest interac- 
tive generative decision-making model Genie-2 relies on massive expert 
annotations on the video. 282 Hence, future explorations have to overcome 
these challenges through refining action space, representing multimodal 
signals, and integrating robust data-filtering mechanisms to ensure scal- 
ability and reliability. 

Generative simulation AI. In efforts to mitigate data acquisition expense, 
generative simulation (GenSim) 205,284–286 leverages simulation environments 
to facilitate decision-making and policy-learning processes. The GenSim frame- 
work consists of two key components: the task proposal module, which gener- 
ates diverse simulation scenarios guided by prompts, and the agent module, 
which learns to adapt or optimize policies across these scenarios. This para- 
digm enables the exploration of complex and diverse decision-making contexts 
without relying exclusively on expensive real-world datasets. In implementa- 
tions such as RoboGen, 284 LLMs are integrated into the task proposal mecha- 
nism, enabling the decomposition of high-level tasks into manageable sub- 
tasks. This allows agents to interact with simulation APIs, retrieve knowledge, 
and train low-level policies through RL techniques. Such modular frameworks 
enhance scalability and adaptability, making them suitable for real-world appli- 
cations like robotics and autonomous systems. OMNI 286,287 exemplifies this by 
simulating comprehensive decision-making environments that replicate a wide 
spectrum of real-world conditions. In GenSim, the term “generation” encom- 
passes two pivotal dimensions: the creation of decision-making scenarios 
and the strategic development of policies capable of robust adaptation across 
tasks. 205 These simulated scenarios facilitate the testing and refinement of pol- 
icies, bridging gaps between synthetic and real-world environments. This itera- 
tive feedback loop accelerates policy learning, reduces dependency on real- 
world data, and allows for proactive experimentation in high-stakes or risky 
contexts. 
However, GenSim faces critical challenges. The effectiveness of this 

framework is contingent on the accuracy and fidelity of simulators, as dis- 
crepancies between simulated and real-world dynamics can degrade pol- 
icy performance—a phenomenon referred to as the Sim2Real gap. 288 

Moreover, as noted in Real2Sim2Real frameworks, 276 the complexities 
of transferring policies between simulated and real-world contexts add 
another layer of difficulty. Ensuring robust generalization, designing 
high-fidelity simulators, and validating policy performance in dynamic 
real-world environments remain pressing research directions for 
GenSim. By integrating LLM-guided task design, scalable simulation mod- 
ules, and RL techniques, a GenSim such as Genesis represents a prom- 
ising direction for cost-effective and adaptive decision-making
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research. 205 However, addressing the technical and conceptual bottle- 
necks will be key to fully realizing its potential.

Key technologies for large-scale IDM 

In this section, the key technologies of large-scale IDM are introduced. 
To more clearly illustrate how these technologies work together, a frame- 
work is first presented, as shown in Figure 6. 289 This framework outlines 
the core technical components involved in the decision-making process 
of an intelligent agent and their inter-relationships, providing an intuitive 
perspective to understand the roles of various technological elements 
in IDM. 
Through the integrated application of “memory,” “planning,” “tools,” and “ac- 

tion,” large-scale intelligent decision-making systems can efficiently handle 
complex tasks, achieving automation and optimization of the decision-making 
process. The key technologies of each aspect and their roles in IDM will be dis- 
cussed in detail. 
By integrating “memory,” “planning,” “tools,” and “action,” large-scale IDM sys- 

tems can efficiently handle complex tasks, enabling the automation and optimi- 
zation of the decision-making process. For example, in autonomous driving, the 
agent uses memory to recall traffic rules and historical information, plans 
routes, and applies tools (such as sensors and map data) in real time to deter- 
mine the best driving strategy. In intelligent grid management, the agent utilizes 
historical data and real-time grid status to perform power scheduling and opti- 
mization, ensuring the efficient and stable operation of the grid. Here we explore 
each technical module and its role in IDM in more detail. 

Memory modules. In large-scale IDM technologies, memory technology 
optimizes the decision-making process by accumulating historical experi- 
ences, improving efficiency, and reducing errors. It enables systems to 
learn and improve in complex environments, accelerates learning through 
experience replay, and supports personalized and context-aware decision- 
making. Additionally, memory enhances the stability and interpretability 
of the system, allowing decision traces to be reviewed and improving 
transparency. In multi-agent systems, memory facilitates knowledge 
sharing and collaborative decision-making, enhancing overall perfor- 
mance. It also helps the system detect anomalies, diagnose issues, and 
adjust strategies in a timely manner, thereby strengthening the system’s 
robustness and adaptability.

Figure 6. Examples of key technologies for intelli- 
gent decision-making The large-scale IDM system 
can be viewed as an “Agent,” whose core technical 
framework can be broadly divided into four modules: 
Memory, Planning, Tools, and Action. The Agent ac- 
quires information about the external environment 
through the Perception module and stores it in both 
short-term and long-term memory. The Planning 
module generates decision plans based on the cur- 
rent environmental state and historical information, 
while the Tools module provides external resources, 
such as computation and search functions, to assist 
in the decision-making process. Finally, the Agent 
executes the corresponding actions based on the 
planning results. This process affects the state of the 
environment, and through environmental feedback it 
further adjusts the Agent’s behavior strategy.

Early explorations of memory mechanisms 
largely focused on model design and algorithm 

optimization, aiming to identify efficient 
methods for storing and utilizing historical infor- 
mation to improve task performance. 290,291 

Recurrent neural networks (RNNs), 292 as one 
of the most classic and representative methods, 
enable the model to possess memory capabil- 
ities by cyclically passing information through 
hidden states across time steps. However, due 
to the problem of vanishing gradients, RNNs 

struggle to effectively learn long-term dependencies. This limitation results in 
RNNs being able to retain information only within short time ranges, performing 
poorly on tasks involving long-term dependencies. 
To address this issue, scholars have proposed numerous improvement 

methods. 293–295 Among them, LSTM networks 293 introduced a gating mecha- 
nism on top of RNNs, which helps mitigate the vanishing gradient problem to 
some extent and significantly improves the ability to model short-term memory. 
As a result, LSTMs have been widely applied in time-series analysis and NLP 
tasks. 296,297 However, LSTM still faces challenges such as a lack of paralleliza- 
tion and limited ability to model long-range dependencies, leading to ineffi- 
ciencies when handling long-sequence tasks. 
However, the aforementioned works struggle to meet the demands of 

long-term memory. To address this challenge, researchers have conducted 
extensive explorations into developing methods to enhance the modeling and 
utilization of long-term dependencies. 298–300 Among them, memory net- 
works 298 propose a neural network architecture with explicit long-term memory 
storage, enabling knowledge storage and retrieval. This method represents an 
early successful exploration of explicit long-term memory modeling and laid the 
foundation for subsequent memory-augmented neural networks. By incorpo- 
rating an external memory component, memory networks allow the model 
to access and utilize stored information more effectively, improving its perfor- 
mance in tasks requiring long-term dependencies and complex reasoning. 
Otherwise, Transformer 58 utilizes the self-attention mechanism to dynamically 
allocate attention weights, capturing dependencies within the input sequence 
and breaking the limitations of traditional sequential time steps. This signifi- 
cantly enhances the model’s parallel computation capabilities. The attention 
mechanism dynamically selects key information relevant to the current task, 
reducing computational redundancy and enabling intelligent agents to make 
rapid decisions in a short time frame. This architecture has laid the groundwork 
for numerous large-scale pretrained models (e.g., GPT and BERT), establishing 
the widely adopted pretraining-and-fine-tuning paradigm in modern machine- 
learning research and applications. 
Since the introduction of Transformer, numerous improvement methods 

have been proposed based on its architecture. 301–304 Among them is the 
Compressive Transformer, proposed in 2020, 301 combining short-term and 
compressed memory to preserve historical context in long-sequence tasks, 
thereby enhancing Transformer’s performance in memory modeling. In the
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same year, a paper on RAG 305 proposed a framework that augments language 
models with external database retrievals to supplement their limited knowledge. 
This framework facilitates long-term dependency modeling and knowledge- 
augmented task generation, effectively overcoming the knowledge memory 
bottleneck in language models. In recent years, Mamba 306 and similar works 
have introduced a novel memory modeling framework by incorporating a 
selective state space model and linear recursion mechanisms. This approach 
facilitates efficient state updates with low computational complexity, showing 
potential usefulness in enhancing the performance of sequence-based tasks 
and contributing to long-term dependency modeling. 

Planning and control technologies. The key technologies of IDM rely on 
reasonable planning methods, the use of tools, and the execution of actions. 
The planning technology designs the optimal action plan by reasonably 
analyzing task requirements and constraints, ensuring the effectiveness and 
feasibility of the decision; the tool-usage technology provides the necessary 
auxiliary tools and resources for the agent, enabling it to efficiently process in- 
formation, solve problems, or complete tasks; the action execution technology 
ensures that the agent can accurately and quickly perform specific operations 
according to the planned scheme, ultimately achieving the desired goal. The 
organic integration of these three elements enables IDM to be efficient and 
precise. 
In the past, researchers have conducted extensive explorations on planning 

problems. 307–309 Among them, The HTN (hierarchical task network) method 307 

achieves planning by hierarchically decomposing tasks, gradually refining high- 
level goals into lower-level specific operational steps to form executable plan- 
ning paths. As one of the classic representatives of early planning technologies, 
this method has been widely applied over the past decades. 
With the integration of machine learning and environmental modeling, World 

Models, 310 proposed in 2018, introduced the concept of agents planning and 
making decisions by learning latent representations of the environment. This 
approach simulates environmental states using a world model, overcoming 
the challenges of complex decision-making in dynamic environments. It signif- 
icantly enhances the generalization ability and efficiency of task planning and 
has been widely applied in strategy games and RL tasks. 
In addition to the aforementioned technologies, researchers have also begun 

exploring methods of “tool usage,” aiming to enhance the planning and execu- 
tion capabilities of intelligent agents by enabling them to learn how to effectively 
use existing external tools. Some studies 311,312 integrated neural networks with 
modular tools for logical reasoning and complex task decomposition, demon- 
strating the potential of models to utilize tools for task completion. The recently 
proposed Toolformer, 151 through self-supervised learning, trains models to 
autonomously decide when to call APIs, which parameters to pass, and how 
to integrate the API results into the language model’s text predictions. This 
approach significantly improves the model’s zero-shot learning capabilities 
across various tasks. However, Toolformer suffers from limitations such as a 
fixed tool invocation mechanism, insufficient contextual adaptability, and 
limited generalization capability for complex tasks. ToolLLM 313 constructed 
an instruction-tuning dataset called ToolBench for tool usage and proposed a 
depth-first search decision tree method, enabling open LLMs to utilize over 
16,000 real-world APIs. This approach addresses the limitations of open 
models in tool invocation and complex task execution, significantly enhancing 
their reasoning and generalization capabilities. However, ToolLLM excels only in 
narrow task domains, such as specific operations within a certain class of tools, 
and struggles with multitask, multidomain complex interactive tasks. In 
contrast, the recently proposed OS-Copilot 314 constructs a general framework 
capable of comprehensive interaction with operating systems, enabling agents 
to autonomously operate across multiple domains such as web pages, termi- 
nals, files, multimedia, and third-party applications. This approach addresses 
the limitations of current agents in task scope and tool adaptability, providing 
a technical foundation for building general-purpose OS-level agents and 
advancing their evolution from tool invocation to multitask, multidomain adapt- 
ability in open environments. 
With the development of LLMs such as GPT-4, planning techniques that inte- 

grate reasoning and acting have become a new research focus. Among these, 
Google DeepMind’s ReAct 315 enables efficient planning by combining natural 
language-based CoT reasoning with tool utilization. This approach leverages 
the reasoning capabilities of LLMs to break down complex tasks and directly 
interact with tools or environments to execute actions, paving the way for

more advanced and versatile planning systems. In recent years, the world 
knowledge model method 316 has been proposed, which integrates prior task 
knowledge with dynamic state knowledge. This approach significantly en- 
hances an agent’s global planning and dynamic adaptation capabilities in com- 
plex environments, achieving substantial performance breakthroughs across 
various tasks. In addition, ReAct 315 proposed a method that combines CoT 
reasoning with dynamic tool usage, effectively integrating the reasoning and 
execution capabilities of LLMs to enable efficient action execution in deci- 
sion-making tasks. Voyager 242 further advanced exploration and skill reuse in 
open-world environments. By leveraging LLMs, Voyager generates action plans 
and code through natural language, dynamically adapting to task objectives, 
and incorporates a long-term memory mechanism to store and reuse skills. It 
demonstrated autonomous exploration and task execution in the open-world 
game Minecraft, addressing challenges related to autonomous exploration, skill 
acquisition, and continual learning in open environments. This significantly 
enhanced the ability of agents to generate and optimize actions in dynamic 
settings.

Simulation technology and its pivotal role in IDM 

Simulation replicates real-world processes or systems using mathematical 
formulas, physical models, machine-learning algorithms, computer-generated 
representations, or their combinations, enabling the study of complex behav- 
iors, underlying characteristics, and emergent phenomena. 317 Through its 
unique capability to explore cause-and-effect relationships and model-based 
scenarios, these “what-if” analyses serve as invaluable tools for evaluating po- 
tential outcomes and informing future decisions. 318 In addition to directly sup- 
porting decision-making, simulation technology plays an indispensable role in 
IDM paradigms such as RL and FMs, serving multiple critical functions such 
as providing optimized learning environments, generating vast amounts of 
data, and enabling comprehensive testing and evaluation. As a result, this tech- 
nology has been extensively adopted for analysis and decision-making across 
diverse sectors, especially for complex systems including transportation, social 
systems, economics, military operations, and energy management. 319 Despite 
the controllable analyses enabled by simulation-based approaches for support- 
ing decision-making, current methods face several limitations in real-world ap- 
plications: (1) balancing computational efficiency and simulation accuracy is 
difficult; (2) designing simulation environments to improve a model’s generaliza- 
tion ability in unseen scenarios is challenging; and (3) coupling mechanisms of 
decision variables remain unclear. Fortunately, simulation, as an interdisci- 
plinary solution, has continuously embraced cutting-edge information/commu- 
nication and AI technologies to advance itself. Examples include knowledge- 
data jointly driven modeling, multimodal and multitask simulation, and 
computational experimental methods, 320 which have given rise to innovative 
simulation concepts such as parallel intelligence, 321 generative simulation, 205 

and digital cousins. 322 Notably, incorporating LLMs into modeling and simula- 
tion has revitalized this approach, gaining widespread attention and advancing 
IDM in complex systems. 

Simulation-based intelligent decision-making. The US Department of De- 
fense defined simulation as the use of models—physical, mathematical, or 
other logical representations of systems, entities, phenomena, or pro- 
cesses—to replicate the operations of real-world processes or systems over 
time, with the goal of supporting management or technical decision-mak- 
ing. 323 It enables experimentation, hypothesis testing, and scenario analysis, 
offering valuable insights into system behaviors under varying conditions 
and supporting decision-making processes across various fields. Advancing 
technology has propelled simulation forward, giving rise to innovative con- 
cepts like parallel intelligence, 321 LLM-empowered agent-based modeling 
and simulation, 324 and simulation intelligence decision generation, 319,325 all 
closely tied to intelligent decision-making. Based on the way used to support 
decision-making, the motivations of simulation can be categorized as follows.
(1) Simulation-based prediction aims to explore the solution space by 
analyzing the future trends of one or more variables, facilitating future deci- 
sions. For instance, an interactive individual-based simulator was created to 
predict the future spread of an epidemic through multisource information 
fusion during the COVID-19 outbreak. 326 (2) Causal reasoning involves con- 
ducting hypothetical experiments by altering externally applied interventions, 
enabling decision adjustments based on experimental results, and supporting
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intervention and management. For example, to reach a Pareto optimum with 
respect to efficacy versus costs, Zhu et al. 327 proposed a universal computa- 
tional experiment framework with a fine-grained artificial society integrating 
with functional data-based models. The purpose of the framework is to eval- 
uate the effects of different interventions. (3) Emergence discovery leverages 
multiscale simulation to study emergent behaviors and element coupling 
mechanisms, gaining new knowledge to enhance decision-making. Taking 
epidemic control in large transportation hubs as an example, by developing 
individual-level mobility models and contact networks, the spread of infectious 
diseases can be accurately modeled and characterized. 328 It is found that the 
increase in cumulative incidence exhibits a linear growth mode, different from 

that (an exponential growth mode) in a static network of a city, which can be 
leveraged to devise more effective control strategies. 

Simulation-enhanced intelligent decision-making. Simulation also plays 
a vital role in the training, learning, and evaluation of multi-agent RL and 
embodied agents. It provides safe, efficient, and customizable environments, 
generates large-scale training data, and enables comprehensive assessments 
of model performance and generalization. Moreover, it offers critical support 
for model optimization and predeployment testing (Sim2Real) in real-world ap- 
plications. 329 Based on the way used to aid IDM paradigms such as RL and 
FMs, the motivations of simulation can be categorized as follows.

(1) Provide a safe, low-cost, and customizable testing or interactive envi- 
ronment and generate training and testing data to accelerate the 
learning process. For example, in the fields of autonomous driving 
and robotics, testing in real-world environments may involve safety 
risks and high experimental costs. Simulation environments can be 
customized to create various conditions as needed, enabling the 
safe and cost-effective simulation of various scenarios, including 
rare, hazardous, or difficult-to-reproduce situations in real-world set- 
tings. This allows for comprehensive testing of a model’s robustness 
and adaptability. Typical platforms include TongVerse, 330 Isaac 
Sim, 331 and Genesis.

(2) Evaluate the generalization ability of models and support various eval- 
uation metrics. Simulation allows models to be tested across diverse 
scenarios that mirror real-world conditions, helping to verify their abil- 
ity to generalize from simulation to reality. The introduction of gener- 
ative simulation 205 has made this process more cost-effective and 
efficient. Moreover, simulation environments support various evalua- 
tion metrics, such as average reward, best single-instance reward, 
and sample efficiency, enabling a thorough and reliable assessment 
of a model’s performance. For example, RL-CycleGAN, trained in 
simulation and validated in real-world robotic grasping tasks, has 
showcased exceptional results. 332

(3) Optimize RL through human feedback to achieve human-machine 
value alignment. In RLHF, simulation can be used to generate post 
hoc feedback to evaluate whether a model’s behavior is truly benefi- 
cial. For example, reinforcement learning from hindsight simulation 
(RLHS) was introduced to simulate plausible consequences and 
then elicits feedback to assess what behaviors were genuinely bene- 
ficial in hindsight, thereby reducing inconsistencies between the 
model’s actions and human values. 333 Experimental results show 
that RLHS consistently outperforms RLHF in helping users achieve 
their goals and earns higher satisfaction ratings.

Open challenges and future directions. In this discussion, we explore 
the open challenges and future directions of simulation-based IDM across 
the following aspects. (1) Data and knowledge jointly driven modeling and 
simulation. The gap between simulated and real environments means 
that models showing excellent performance in simulations may not main- 
tain the same level of effectiveness when deployed in real-world situa- 
tions. Thus, it is nontrivial to jointly utilize the information at different 
scales to build the simulation environment. Knowledge-based methods 
are constrained by the cognitive capabilities of its time, often failing to 
precisely capture the evolution mechanisms of complex systems. In 
contrast, data-driven methods rely on the quantity and quality of data 
samples. Their effectiveness may be greatly affected in the scenario 
where the observation data are not covered. Thus, using the advantages

of both methods and studying data and knowledge jointly driven modeling 
and simulation is an important tendency for future research. (2) Tradeoff 
between the computation efficiency and simulation accuracy in large- 
scale simulation systems. Simulation environments face challenges in ef- 
ficiency, scalability, and resource consumption when scaling up to large 
and complex scenarios. Optimizing simulation environments to support 
large-scale training and testing is a pressing challenge, particularly for 
models that rely on API-based commercial LLMs. Thus, studying sys- 
tem-level (e.g., computational task optimization) and prompt-level optimi- 
zation (novel prompt strategy) to ensure accurate results while reducing 
the running time is another issue worth investigating. Beyond the points 
mentioned above, several other issues have attracted widespread atten- 
tion and merit investigation, including constructing open scalable simula- 
tion platforms, large-model-empowered modeling and simulation work- 
flow, achieving continuous learning in a simulation environment, 
multimodal and multitask simulation, and more. 
By tackling these open challenges and exploring future directions, simulation 

technology holds the potential to significantly enhance IDM and propel further 
advancements in AI.

FM-BASED IDM FOR SCIENCES 
With the continuous advancement of AI technology, FMs have become 

increasingly integral in the field of science, significantly contributing to the 
enhancement of scientific research and decision-making capabilities. This 
section explores the applications of FMs across diverse scientific domains, de- 
tailing their roles in bolstering research capabilities and the quality of decision- 
making processes in information science, mathematical science, life science, 
healthcare, dentistry, urban science, agricultural science, economic science, 
and educational science. The outline is shown in Figure 7.

Information science 
FMs, pretrained on large-scale data with self-supervised learning, have 

demonstrated strong generalization across diverse downstream tasks in infor- 
mation science. 50 Their capacity for transfer learning enables success in do- 
mains such as inference, 334 control, 335 planning, 336 and searching, 50 with appli- 
cations spanning robotics, automation, remote sensing, communications, and 
power systems. For example, FM-driven models empower robots to operate 
in the real world and support human decision-making through data-driven in- 
sights. Unlike task-specific models, FMs can generalize to unseen problems 
by leveraging shared features across tasks, which enables in-context learning 
and cross-modal processing. 48 Gato, 337 for instance, acts as a generalist agent 
that can chat, caption, play games, and control robots. 334 By integrating diverse 
datasets, FMs enhance sequential decision-making in areas like Atari games, 11 

board games, 338 and robotic tasks, 339,340 holding significant promise for future 
intelligent systems. 

Generalizable robotics and autonomous systems. Prior to the emergence 
of FMs, deep learning in robotics relied heavily on the task-specific datasets, 
which constrained both flexibility and scalability. 341 Traditional robotic systems 
required manually curated datasets tailored to specific tasks, limiting their abil- 
ity to generalize to complex or unfamiliar environments. FMs, however, have 
transformed this paradigm by leveraging large-scale pretraining on diverse da- 
tasets, followed by task-specific fine-tuning. This approach allows FMs to learn 
transferable representations, enabling robots to extract high-level semantic 
features from raw sensory inputs and apply them to various decision-making 
processes. Specifically, techniques such as in-context learning and instruction 
tuning empower robots to infer task objectives from natural language prompts 
or multimodal cues rather than requiring explicit retraining. One of the most 
transformative features of FMs is their zero-shot capability, which is achieved 
through contrastive learning and prompt-based adaptation. These mechanisms 
allow robots to generalize to unseen tasks without task-specific training, signif- 
icantly improving their adaptability in unstructured or novel environments. 342 

Notable examples of FMs, such as BERT, 59 GPT-3, 61 GPT-4, 13 CLIP, 14 

DALL-E, 62 and PaLM-E 238 demonstrate the versatility of these models in ro- 
botics. BERT, originally designed for natural language processing, helps robots 
decode complex semantic information, especially for multistep language in- 
structions. GPT-3 and GPT-4, known for their natural language reasoning and 
generation abilities, allow robots to process user commands and create
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multistep action plans in dynamic environments. CLIP aligns text with visual 
representations and enables robots to identify and interact with objects based 
on textual descriptions. DALL-E enhances visual tasks by generating synthetic 
environments for task rehearsal and route planning. In multimodal reasoning, 
FMs integrate heterogeneous sensory data into unified representations and 
improve the robots’ perception, reasoning, and decision-making. 343–349 FMs’ 
ability enables robots to link textual commands with objects, locations, and ac- 
tions and facilitates spatial reasoning and task execution in real-world settings. 
For instance, PaLM-E integrates data from visual, linguistic, and sensory inputs, 
equipping robots with robust reasoning capabilities for complex scenarios. 238 

Recent advancements in robotic swarm intelligence further illustrate the impact 
of FMs. Unlike traditional swarm robots that rely on predefined communication 
protocols and task-specific planning strategies, human-like swarm behavior 
emerges when leveraging LLM DeepSeek for reasoning and communication. 350 

In a decentralized multirobot system where each agent initially possesses only 
local information and is unaware of others’ existence, FMs enable robots to 
discover peers, exchange information, and coordinate dynamically using natural 
language. Experimental results in zero-shot settings reveal emergent social be- 
haviors such as collaboration, negotiation, and mutual error correction, 
mimicking aspects of human teamwork. This novel approach highlights how

FM-driven agents can form interactive societies, advancing the study of “robot 
anthropology” and shedding light on emergent collaborative structures in auton- 
omous systems. 
FMs’ ability to transfer knowledge from pretraining reduces the training time 

and computational resources required compared to traditional models. In 
imitation learning, FMs leverage expert demonstrations in visual or textual for- 
mats to generate high-quality strategies. 351 In RL, FMs utilize language-driven 
reward mechanisms to optimize policies and improve task performance with 
fewer iterations. 352 Moreover, large vision-language models (VLMs) assist ro- 
bots in visual question answering and generate descriptive labels for visual 
content, which simplifies data annotation and task execution. 353 Through 
fine-tuning, FMs adapt to various robotic applications, such as autonomous 
systems, household assistants, industrial automation, and multirobot coordi- 
nation. 354 These advancements highlight the transformative impact of FMs 
in enhancing cross-modal reasoning and bridging user intent with machine ac- 
tions. The integration of FMs in robotics represents a significant milestone in 
the development of autonomous systems. Unlike traditional rule-based or 
task-specific learning approaches, FMs leverage large-scale pretraining on 
multimodal data, enabling them to generalize across diverse scenarios. By uti- 
lizing transformer-based architectures and self-supervised learning, FMs can

Figure 7. Foundation-model-driven intelligent decision-making in multidisciplinary sciences featuring the core roles of FM in intelligent decision-making, supported by diverse 
data types for training, and showcasing applications in key scientific fields such as information science, mathematical science, life science, healthcare, dentistry, urban science, 
agricultural science, economic science, and educational science
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parse and infer user intent from natural language commands, ensuring that 
autonomous systems align closely with human objectives. Specifically, tech- 
niques such as prompt engineering and instruction tuning enable FMs to 
dynamically adjust their responses based on contextual cues, improving deci- 
sion-making in dynamic environments. 
Beyond understanding commands, FMs enhance IDM in robotics through 

structured reasoning and few-shot learning. They achieve this by leveraging 
cross-modal embeddings, which allow autonomous systems to correlate sen- 
sory inputs (e.g., vision, language, and motion data) and make context-aware 
decisions. 355 For example, models like GPT-4 13 and PaLM-E 238 have demon- 
strated proficiency in processing intricate language instructions and translating 
them into executable robotic actions with high accuracy. This transformation is 
facilitated by contrastive learning and RL techniques that fine-tune the model’s 
response patterns based on real-world feedback. Furthermore, the reliability of 
these models depends on both the quality of their learned representations and 
the optimization of prompt structures, reinforcing the importance of fine-tuning 
strategies for specific downstream tasks. This deep integration of FMs in ro- 
botics establishes them as a foundational technology for the future of autono- 
mous systems. 

Multimodal understanding in remote sensing. Remote sensing technology 
has advanced significantly in recent years, driven by the development of diverse 
sensors, including optical, thermal, and radar, which enable the collection of 
high-resolution data about the Earth’s surface. Optical sensors capture visible 
and near-infrared light for vegetation and land cover analysis, thermal sensors 
detect heat signatures for monitoring volcanic activity and climate change, and 
radar sensors provide crucial data in extreme weather conditions for tasks such 
as soil moisture estimation and urban infrastructure mapping. 61,356,357 FMs 
enhance remote sensing by integrating large-scale multispectral and multitem- 
poral data through self-supervised learning techniques. Unlike conventional 
remote sensing models that require task-specific feature engineering, FMs 
leverage transformer architectures to learn spatial and temporal correlations 
across diverse sensor modalities. For instance, VLMs pretrained on satellite im- 
agery and geospatial descriptions enable zero-shot classification and segmen- 
tation of land cover changes without requiring extensive labeled datasets. Addi- 
tionally, contrastive learning techniques allow FMs to align satellite images with 
textual descriptions, improving their ability to extract meaningful patterns from 

heterogeneous remote sensing data. These capabilities significantly enhance 
the efficiency and accuracy of tasks such as deforestation monitoring, disaster 
response, and climate modeling, demonstrating the transformative impact of 
FMs in remote sensing applications. 
The applications of FMs in remote sensing tasks, such as the scene classifi- 

cation, the semantic segmentation, the object detection, and the change detec- 
tion, has substantially improved the performance and set new benchmarks in 
this field. Initially, the CNNs, such as ResNet, 72 were used to improve image 
recognition and classification tasks. Later, the introduction of transformers, 
which utilize the self-attention mechanisms to model long-range dependencies 
and enable more effective handling of large-scale image data. 58,358 In remote 
sensing, FMs’ ability to leverage self-supervised learning techniques allows 
them to learn robust representations even without extensive labeled datasets 
and enhances their versatility. 359 Satellite Masked Autoencoder (SatMAE), 
which is a model designed specifically for temporal and multispectral satellite 
imagery, is a notable contribution to this field. 360 By employing masked autoen- 
coders, SatMAE learns both spatial and temporal representations of the satellite 
images and makes it especially effective for tasks like change detection, since 
understanding the evolution of a region over time is crucial. Another significant 
development is the Scale-MAE, which incorporates scale-aware learning into 
the autoencoder framework and enables the model to capture the geospatial 
representations at multiple scales. 361 This ability is crucial for applications 
such as urban planning, where both macro- and micro-level details are impor- 
tant for the infrastructure mapping and land-use classification. Furthermore, 
DINO-MC enhances the capability of FMs in remote sensing by improving the 
global-local alignment through a self-supervised learning approach. 362 DINO- 
MC extends contrastive learning methods to align global features with local im- 
age patches, which enhances performance in the object detection and the 
scene classification tasks. By leveraging the power of FMs, these models offer 
significant advancements in processing the complex remote sensing data, 
driving improvements in the environmental monitoring and the planning of ur- 
ban development. Despite these models facing challenges such as the need

for high-quality, diverse datasets and substantial computational resources, 
the progress made by FMs marks a new era in remote sensing, setting new 
benchmarks for both accuracy and efficiency in the remote sensor field. 

Efficient intelligent manufacturing. Traditional machine-learning ap- 
proaches encounter substantial challenges in processing multimodal data 
within intelligent manufacturing systems, as they typically rely on task-specific 
feature engineering and require individually designed models tailored to spe- 
cific production lines or distinct manufacturing processes. This paradigm im- 
poses significant computational and labor costs while limiting model general- 
ization across diverse industrial scenarios. Furthermore, traditional ML models 
often struggle to integrate heterogeneous data sources effectively, restricting 
their capacity for cross-modal reasoning and adaptive decision-making. In 
contrast, FMs leverage cross-modal embedding representation learning to 
map multimodal data into a unified vector space, facilitating seamless infor- 
mation fusion and collaborative decision-making across different modalities. 
Through large-scale pretraining on diverse datasets, FMs acquire robust 
zero-shot and few-shot learning capabilities, enabling them to generalize to 
previously unseen tasks with minimal adaptation. These properties signifi- 
cantly enhance their scalability, adaptability, and overall performance in dy- 
namic and complex industrial environments, offering a promising direction 
for the development of intelligent, data-driven manufacturing systems. Tradi- 
tional deep-learning models in prognostics and health management often 
face challenges such as limited generalization, difficulty in handling multi- 
modal data, and the inability to perform multitasking, which hampers their 
application in dynamic industrial environments. Leveraging their ability to cap- 
ture long-term dependencies, GPT-like models excel in processing diverse 
sensor data streams, such as vibration, 363 sound, current, 364 voltage, 365 tem- 
perature, 366 and pressure. 367 For instance, the Time Series Transformer 
(TST) integrates time-series tokenization and Transformer architectures and 
significantly outperforms conventional CNNs and RNNs in fault mode recogni- 
tion for rotating machinery. 368 Furthermore, by incorporating domain knowl- 
edge through prompt engineering, FMs enhance both the quality and accuracy 
of outputs without altering model architecture. 369 The VS-LLaVA pipeline 370 

was extended by applying LLMs to signal parameter identification and fault 
diagnosis, yielding substantial performance improvements. 
In parallel, the paradigm of intelligent manufacturing is transitioning from ma- 

chine-centric to human-centric models, with human-robot collaboration (HRC) 
enabling greater flexibility and efficiency in multivariety, small-batch produc- 
tion. 371 Despite its potential, HRC is constrained by task-specific limitations 
and the need for retraining when encountering novel objects. FMs, with their 
robust reasoning and generalization capabilities, address these constraints, 
making them ideal for diverse HRC tasks. Initial research enhanced robot 
perception using computer vision techniques like gesture recognition and mo- 
tion pattern encoding, 372–375 while recent efforts have shifted toward generaliz- 
able task execution frameworks. For example, the Robotics Transformer is 
trained on large-scale, task-agnostic datasets to achieve generalization across 
diverse robotic tasks. 376 Furthermore, the FM was integrated with vision foun- 
dation models (VFMs) for scene perception and LLMs for task reasoning, 
creating a pipeline that generates and executes control code, enabling robots 
to handle previously unseen tasks with language and visual guidance. 

Driving the intelligence of next-G communications. The technical chal- 
lenges in communication networks stem from their dynamic nature, 
complexity, and increasingly diverse demands, encompassing network config- 
uration and enhanced security. 377,378 FM, with their powerful capabilities in 
multimodal data processing, generalization, and contextual understanding, 
offer the potential to collaboratively solve these issues across these domains, 
providing crucial technical support for the intelligent and efficient operation of 
future communication networks. 
Network configuration involves setting parameters for various devices within 

the network, such as switches, routers, servers, and network interfaces, to 
ensure reliable data transmission from the source to the destination. A flexible 
and efficient network configuration framework is a critical technology support- 
ing resource scheduling, traffic management, and service optimization in next- 
generation (next-G) communications. CloudEval-YAML 379 is proposed as a 
benchmark tool for YAML configurations in cloud-native applications, with 12 
LLMs analyzed for generation quality, task performance, and cost efficiency. 
It addresses the lack of standardized benchmarks, aiding LLM application 
and optimization in cloud environments. Leveraging generative mechanisms
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such as autoregressive generation (e.g., GPT-4) or diffusion models (e.g., 
DiffusionBERT 380 ), verified prompt programming 381 enhances the accuracy 
of network configuration by integrating GPT-4’s generation capabilities with 
structured prompts and human-in-the-loop validation. Through iterative refine- 
ment of model-generated code via prompt engineering and manual corrections, 
this approach ensures more precise and reliable automated configuration pro- 
cesses. With the advancement of large models, LLM-driven end-to-end ap- 
proaches are emerging as key to intelligent network configuration. Furthermore, 
a general framework is proposed for fully automated network management sys- 
tems, eliminating the need for manual validation. 382 Leveraging natural lan- 
guage and LLM-generated code, this approach utilizes prompt engineering to 
integrate domain knowledge with general program synthesis techniques, 
ensuring the generation of high-quality network configuration code. 
Advancing telecom technologies brings increased complexity and intercon- 

nectivity, heightening the sophistication and variety of network attacks. This 
makes network security and attack detection especially important. Bayer 
et al. 383 developed a high-quality cybersecurity dataset and proposed a 
domain-specific language model as a foundational component to enhance un- 
derstanding of specialized knowledge and technical terms. Furthermore, 
SecureBERT is designed to capture the semantic meaning of cybersecurity 
texts like Cyber Threat Intelligence. 384 It was trained on a large corpus of cyber- 
security-related content and maintains its general semantic understanding 
while being tailored for evaluation in various cybersecurity tasks. In contrast 
to the approaches that fine-tune pretrained LLMs, SecureBERT is developed 
by building a security-specific LLM from the ground up. 385 The model is a 
network threat detection method based on the BERT architecture, utilizing pri- 
vacy-preserving fixed-length encoding and byte-level byte-pair encoding token- 
izers to process network traffic data. With a compact model size of only 16.7 
MB and an inference time of less than 0.15 s on a standard CPU, the model 
demonstrates remarkable efficiency. Furthermore, it outperforms traditional 
machine-learning and deep-learning methods in identifying 14 distinct attack 
types, achieving an overall accuracy of 98.2%. 

Advancement in power systems. Electricity, a key component of the energy 
system, deeply affects our daily lives in various ways. To promote global elec- 
trification and achieve carbon neutrality, it is imperative to build highly efficient, 
flexible, and interconnected power systems. Currently, new technological break- 
throughs, such as the Internet of Things (IoT) and AI, have brought exciting 
development opportunities and critical challenges to the digital and intelligent 
transformation in the power industry. 
Recently, AI-based large model technologies such as LLMs have made 

remarkable progress, showing promising potential in a wide range of global in- 
dustries. 386 Represented by the generative pre-trained transformer (GPT) family 
of OpenAI, the latest GPT-4 effectively improves the performance of large 
models by deepening the Transformer architecture and innovative pretraining 
strategies, largely promoting their applications in broad domains. The iterative 
technology evolution in LLMs profoundly influences the power industry and pro- 
motes the development and application of potential power large models. 
In power systems, traditional data acquisition often relies on the feature se- 

lection according to previous experiences, which are inefficient and subjectively 
selective. In contrast, automated data analysis based on AI large models breaks 
the limitations of manual selection methods by learning from large amounts of 
variable data. 52 The massive data and the multifactor complexity of power sys- 
tems also provide excellent opportunities for training and using AI large models. 
They are able to extract information from datasets that converge from smart 
terminals into the cloud through feature selection by learning algorithms, finally 
improving the predictive accuracy of analytical models. At present, large- 
models-based IDM technologies have been preliminarily used for the intelligent 
diagnosis, operation, and maintenance of electrical equipment. Their powerful 
data-processing capability, self-learning ability, and analysis-warning function 
effectively solve many problems such as the insufficient diagnostic accuracy, 
delayed response, and high cost of operation and maintenance in traditional 
technologies. Meanwhile, through deep-mining operation data of electrical 
equipment, IDM by large models can warn of potential faults in advance, 
achieve accurate localization of fault sources, and optimize operational strate- 
gies to improve operation and maintenance efficiency. 
For instance, the State Grid Corporation of China has launched an AI 

auxiliary power decision-making system based on numerous basic data 
and evaluation models. 387 With the evaluation standard of distribution

network equipment, this system established a comprehensive evaluation 
framework by integrating static equipment parameters with dynamic oper- 
ation data, enabling the assessment of each piece of main equipment in 
the station or on the line. Accordingly, intelligent decisions could be 
made for contributing to station inspection, operation, and maintenance 
strategies. Impressively, China Southern Power Grid has also developed a 
multimodal power model, “Big Watt,” which employed AI technologies to 
analyze various data such as grid operation information, user load, weather 
forecast, and terminal detection, consequently providing detailed analysis 
and prediction information for the power system’s operation and mainte- 
nance. 388 Such a large model can recognize different typical defect haz- 
ards in the distribution electric grid and enables fast and accurate response 
suggestion under emergencies or unforeseen circumstances, thus greatly 
improving the resilience and adaptability of power grids and systems. In 
addition, the ABB Ability data platform has adopted AI with, e.g., cloud 
computing, big data, and 5G, to establish an information cross-fertilization 
power assistance system for calculating and analyzing the collected data, 
which realized fault analysis and remote diagnosis of power equipment and 
improved the efficiency of power systems’ intelligent operation and mainte- 
nance. 389 Similarly, a company in Switzerland, Alpiq, has launched the Grid 
Sense system, utilizing AI technologies to analyze the electrical load, sys- 
tem fault, and power detection in power systems. 390 It closely integrated 
advanced information technologies with power systems to address a se- 
ries of problems such as high labor costs, high work intensity, and poor in- 
spection results that existed in manual inspection methods. These suc- 
cessful cases demonstrate the powerful function of AI large models with 
IDM’s ability in status monitoring, fault prediction, and other aspects, signif- 
icantly enhancing the safety and reliability of power systems. 
With continuous deepening and popularization of AI technologies, the IDM- 

assisted techniques for power system operation and energy management 
are moving in the direction of refinement, real time, and collaboration. Recent 
advancements also showcase that future power systems will rely on AI large 
models closely for deep integration and intelligent analysis of massive complex 
data so as to realize the dual enhancement of operation/maintenance efficiency 
and grid resilience. It is vastly expected that large models will greatly promote 
the power systems toward a more intelligent, reliable, and green direction. 

Data quality and data availability. In the field of computer and information 
science, particularly in industrial systems and next-G communication, data (e.g., 
equipment failure records, sensor measurements, and network latency 391,392 ) 
are often difficult to obtain and frequently contain significant noise, 393 missing 
values, or incorrect time stamps. Additionally, existing datasets in next-G 
communication typically suffer from insufficient volume and task specificity, 
as current datasets are often constructed for specific tasks (e.g., traffic predic- 
tion or network optimization) and lack comprehensive coverage of the complex 
scenarios encountered in communication networks. FMs heavily rely on large- 
scale and diverse datasets during training, which poses challenges in these do- 
mains. The scarcity, low quality, and task specificity of data significantly limit 
the training and application of models in industrial systems and next-G commu- 
nication. Therefore, a key challenge is how to leverage generative FMs (e.g., syn- 
thetic data-generation techniques) to augment data or employ few-shot 
learning approaches (such as transfer learning and meta-learning) to achieve 
efficient learning with limited data. 

Deployment. In the fields of industrial robotics and next-G communication, 
platform resources are often limited, especially in edge devices or mobile termi- 
nals. Deploying FMs typically requires powerful computational hardware, partic- 
ularly GPU or TPU clusters, making the deployment of FMs in resource-con- 
strained environments a challenge. Additionally, industrial operations and 
next-G communication networks demand real-time or near-real-time data-pro- 
cessing capabilities, which place higher demands on the model’s inference 
speed. Therefore, effectively compressing FM models (such as pruning and 
quantization) and optimizing low-latency inference are key challenges for prac- 
tical application.

Mathematical science 
FMs leverage large-scale pretraining to extract generalized mathematical pat- 

terns from diverse datasets, enabling novel approaches to traditional problems 
like optimization, statistical inference, and pattern recognition. 36,394 Their
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effectiveness stems from core mathematical principles: Linear algebra struc- 
tures neural networks through matrix operations and high-dimensional transfor-
mations. 395,396 Calculus enables gradient-based optimization and probabilistic
integration.397,398 Probability statistics support uncertainty quantification via 
Bayesian inference and hypothesis testing. 399,400 These mathematical founda- 
tions not only enable FM development but also benefit from FM-driven in- 
sights—creating a synergistic cycle where theoretical advances inform model 
architectures, while model behaviors reveal new mathematical questions. We 
systematically examine this interplay through FM’s model architecture and 
training, optimization techniques, applications, and challenges. 

Model architecture and training. Understanding the architectural choices
and training paradigms of FM is crucial for leveraging their potential in mathe- 
matical sciences, where their ability to process complex structures and extract 
meaningful patterns underpins significant advancements. Neural networks, 
composed of interconnected layers of neurons, 401 provide a flexible and power- 
ful framework for approximating nonlinear and high-dimensional functions. 
Within the neural networks frameworks, specialized architectures such as 

CNNs, RNNs, and feedforward neural networks cater to specific data structures 
and problem domains. CNNs, for example, excel in processing grid-like data 
structures by extracting localized features, making them indispensable for tasks 
like image analysis or spatial data processing. RNNs, on the other hand, are de- 
signed for sequential data, capturing temporal dependencies and uncovering 
patterns across time steps, although they often encounter challenges with 
long-range dependencies due to vanishing gradients. 402 Feedforward networks, 
as the simplest variant, are highly effective for problems involving static input- 
output mappings, demonstrating the versatility of neural network architec- 
tures. 403 In contrast, Transformers have revolutionized the FM landscape by ad- 
dressing the limitations of traditional sequence-based models like RNNs. 404 

Central to their success is the self-attention mechanism, which enables Trans- 
formers to process entire sequences in parallel, efficiently capturing long-range 
dependencies and scalability. 405,406 This innovation has proven invaluable in 
mathematical sciences, where Transformers excel in parsing symbolic data, 
solving complex equations, and identifying intricate patterns in large datasets. 
Their ability to handle diverse tasks with precision has positioned Transformers 
as a cornerstone for advancing computational methods in the field. 407 

Optimization techniques. Equally important in the development of FMs is 
optimization, which determines how effectively these models can learn and 
generalize. Optimization techniques, which refine model parameters by mini- 
mizing loss functions, play a critical role in enabling convergence and improving 
performance. Stochastic gradient descent, 408 as a foundational method, up- 
dates parameters incrementally using random subsets of data, offering a bal- 
ance between computational efficiency and learning stability. 409 Building on 
this, adaptive moment estimation introduces adaptive learning rates and mo- 
mentum, which accelerate convergence and improve performance, particularly 
in high-dimensional spaces. 410 More advanced algorithms, such as second-or- 
der methods or techniques like gradient clipping, address challenges such as 
vanishing or exploding gradients, enhancing the stability and precision of the 
optimization process. In the context of mathematical sciences, 411 optimization 
demands a higher level of precision and stability, as numerical computations 
often involve solving equations or analyzing multidimensional data with strin- 
gent accuracy requirements. By fine-tuning optimization algorithms to these 
unique demands, researchers can unlock the full potential of FMs, enabling 
them to tackle increasingly complex problems and push the boundaries of 
mathematical research. Through the seamless integration of robust architec- 
tures and sophisticated training techniques, FMs continue to transform the 
way we approach and solve problems in mathematical sciences. 

Applications. FMs are revolutionizing scientific applications, offering trans- 
formative advancements across mathematical modeling and simulation, 
applied sciences, symbolic mathematics, and decision-making under
uncertainty. 
In mathematical modeling and simulation, FMs optimize processes through 

data-driven approaches, particularly in areas where traditional analytical 
methods struggle. 412 For instance, physics-informed neural networks are 
widely used to solve complex nonlinear partial differential equations in fluid dy- 
namics and climate modeling by incorporating physical laws directly into the 
neural network architecture. Similarly, GNNs model traffic flow by capturing 
spatial dependencies and dynamics in traffic networks. 413 In applied sciences, 
FMs enhance the understanding of complex systems like climate dynamics and

material sciences. CNNs analyze climate data, such as satellite imagery, to pre- 
dict weather patterns, while RNNs model the temporal evolution of material 
properties, enabling the discovery of new materials. 414,415 These data-driven 
models complement traditional frameworks, bridging the gap between theory 
and empirical observations. 416 In symbolic mathematics, FMs replicate and 
extend human reasoning through tasks like symbolic integration and theorem 

proving. Transformer-based architectures, such as those in DeepMind’s 
AlphaTensor, automate complex symbolic operations by learning the structure 
of mathematical expressions. 417,418 Furthermore, FMs excel in decision-making 
under uncertainty, a critical capability in fields such as epidemiology and 
finance. Bayesian neural networks provide probabilistic reasoning for modeling 
disease spread, while RL optimizes trading strategies under uncertain market 
conditions. 419,420 

Challenges and perspectives. Despite these transformative applications, 
FMs face substantial limitations, particularly regarding computational demands 
and interpretability. Training and deploying these models require immense 
computational resources, including high-performance computing infrastructure 
and significant memory capacity. As FMs grow larger and more complex, their 
resource requirements increase exponentially, posing substantial barriers for 
research institutions with limited access to such technologies. Furthermore, 
the “black-box” nature of FMs makes the decision-making processes difficult 
to interpret, especially in tasks involving complex mathematical reasoning 
and verification. This challenge is particularly critical in high-stakes fields 
such as finance and healthcare, where trust, transparency, and accountability 
are non-negotiable, and understanding the model’s reasoning is essential. 421 

Mining the rationale behind these models’ outputs from their intricate architec- 
tures remains a profound and ongoing challenge, highlighting the need for inno- 
vative methods to enhance their interpretability and usability. 422

Life sciences 
Life sciences focus on exploring the essence and developmental laws of bio- 

logical activities. In recent years, AI technologies have significantly propelled life 
sciences’ applications, especially in drug design, synthetic biology, and health 
interventions (see Figure 7). With FM-based technologies advancing, life sci- 
ences can achieve a qualitative leap in analytical precision, predictive capabil- 
ities, and IDM. 
De novo drug design and decision-making. The rapid development of AI 

technologies has led to the emergence of large models with massive parame- 
ters, represented by systems such as ChatGPT and AlphaFold. In the field of de 
novo drug design, researchers have leveraged large model techniques to design 
a wide variety of drug molecules with significant biological activity, including 
small molecules, macrocycles, peptides, proteins, and nucleic acids. Using 
LLMs, these models not only autonomously learn sequence features but also 
rapidly generate ligand small molecules. For example, hybrid generative chem- 
ical language models for designing PI3K γ ligands, as demonstrated in 
leveraging molecular structure and bioactivity with chemical language models 
for de novo drug design, exhibit submicromolar to nanomolar activity and show- 
case scaffold-hopping potential. 423 Additionally, LLM-based methods can 
generate candidate bioactive peptides. Chen et al. designed de novo bioactive 
peptide sequences with no toxic side effects. 424 While LLM methods efficiently 
and accurately generate biomolecular sequences, they also face challenges in 
data dependency and interpretability. Inspired by AlphaFold’s protein structure 
prediction, deep-learning-based foundational models can accurately design and 
predict macrocyclic peptide structures. Rettie et al. introduced “cyclization 
encoding” as a positional encoding to predict the structure of natural cyclic 
peptides from sequence information, expanding the structural space of macro- 
cyclic drug molecules. 425,426 

In addition to leveraging pretrained FMs, another approach is to apply stan- 
dard RL agents to optimize the de novo design of drug molecules. Baker’s 
team presented an RL approach using MCTS to design protein nanomaterials, 
overcoming challenges that bottom-up methods (which build proteins from 

fragments) cannot address. 427 The DRL method heavily relies on computational 
predictions due to the explosive structural space of proteins, with potential for 
improvement through policy and value networks to enhance efficiency and 
broaden applications. For example, Frederic et al. trained a policy-based FM us- 
ing DRL, combining neural architecture search, hyperparameter tuning, and joint 
optimization of the sequential decision process to design RNA-based drug
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molecules. 428 In summary, AI IDM models, as a cutting-edge and advanced 
technical means, are widely used to solve scientific problems and technical 
challenges encountered in the process of new drug development. 

Synthetic biology planning and engineering. With the deep integration of 
AI and biology, the field of synthetic biology is advancing rapidly. For instance, 
the combination of AI with plant-based synthetic biology technologies has led to 
the development of disruptive, sustainable agricultural applications. 429 By 
training advanced FMs, traditional biosynthetic cyclic processes have been 
transformed into a multidimensional “design-build-test-learn-predict” work- 
flow, 429 improving synthesis efficiency while simultaneously reducing costs. 
Recent AI-assisted advancements in synthetic biology focus on key areas 
such as genome annotation, protein engineering, metabolic pathway prediction, 
and synthetic route planning. For example, Zhou et al. proposed a few-shot 
learning approach combined with meta-transfer learning, ranking, and param- 
eter fine-tuning to optimize various protein language models and enhance 
prediction performance under conditions of extreme data scarcity. 430 Although 
the method’s effectiveness was validated through a polymerase wet-lab exper- 
iment, the optimization of LLMs for proteins is significantly influenced by data 
distribution, indicating the need for further refinement of the approach. 
Additionally, the issue of time-consuming biosynthetic processes can be 

addressed through AI models that analyze, plan synthetic routes, and optimize 
reaction conditions, ultimately leading to the identification of faster and more 
efficient synthetic pathways, thereby effectively shortening the biochemical 
synthesis cycle. For instance, Vaucher et al., from the perspective of NLP, 
used a custom rule-based NLP model to treat the construction of chemical re- 
action rules as a text extraction problem. 431 Although this method offers high 
prediction accuracy and interpretability, it requires substantial computational 
resources and suffers from poor generalization in FMs. Traditional methods 
for optimizing biosynthetic reaction conditions involve chemists manually 
enumerating all possible combinations of reaction conditions and making deci- 
sions independently, which is both time-consuming and costly. Optimizing 
biosynthetic reaction conditions is a critical step in achieving AI-assisted chem- 
ical synthesis. For example, Zhou et al. combined RL with chemical knowledge 
to iteratively record chemical reaction outcomes and select new reaction 
conditions to improve results, enabling a dynamic, interactive decision-making 
process for optimizing chemical reactions. 432 AI is set to become a powerful 
tool for improving synthetic reaction conditions. 

Life health intervention and management. By leveraging the powerful data 
processing, prediction, and adaptive learning capabilities of FMs, more scientific 
and refined life and health intervention plans can be achieved, improving 
intervention effectiveness and reducing medical costs while promoting the 
popularization of health management. In particular, the application of AI in pre- 
cision nutrition has brought about profound changes in the field. The FM with 
NLP not only extracts and predicts dietary patterns 433 but also provides inter- 
pretable predictions for diet-related diseases, explores the relationship between 
dietary patterns and metabolic health outcomes, and proves the effectiveness 
of NLP methods in improving disease prediction models. 434 The FM based on 
NLP builds molecular-level nutrient analysis and dietary recommendation 
models based on food intake, providing customized and precise dietary recom- 
mendations for individuals based on factors such as genetics, environment, and 
lifestyle. 435 
By establishing efficient models, RL can dynamically balance multiple objec- 

tives, enhancing both the sensory attributes and nutritional value of foods. Amiri 
et al. introduced a multilevel real-time reward mechanism that combines collab- 
orative filtering with user ratings, preferences, and nutritional data. 436 This algo- 
rithm not only addresses nutritional and health factors but also dynamically 
adapts to uncover users’ latent dietary habits, thereby significantly enhancing 
user acceptance and adherence. Furthermore, traditional dietary recommenda- 
tion methods typically suggest foods based on users’ historical preferences but 
often fail to meet real-time health needs. Liu et al. harnessed the continuous de- 
cision-making and interactive capabilities of RL, alongside collaborative filtering 
algorithms, to develop an adaptive dietary decision model. 437,438 This model not 
only fulfills nutritional and health requirements but also dynamically adjusts to 
users’ taste preferences and personal satisfaction. RL techniques can iteratively 
refine food formulations through feedback mechanisms, enabling responsive- 
ness to changing consumer demands. Despite the successes of RL in meal rec- 
ommendations, significant shortcomings remain. Existing literature often inte- 
grates food components merely into categories without adequately

considering the specific impacts of food composition and dietary structure 
on health. Additionally, individuals’ genetic data are frequently overlooked in 
the food recommendation process, resulting in an incomplete assessment of 
health characteristics. Future research should incorporate dynamic factors 
such as seasonal variations, specific occasions, and ingredient availability 
into meal recommendation plans. By integrating knowledge graphs, user pref- 
erence information can be displayed more dynamically, enhancing the general- 
izability and effectiveness of dietary recommendation algorithms. 

Challenges and perspectives. The application of IDM models in the life sci- 
ences, particularly in drug development, synthetic biology, and health interven- 
tions, is driving revolutionary changes. However, these advancements also face 
challenges in data, algorithms, ethics, and legal issues, which manifest in the 
following three main aspects. (1) Data challenges: compared to the large data- 
sets required by FMs, the scale of data in the life sciences is relatively small and 
often contains noise and missing values, which can impact the accuracy of IDM 

models. In the future, these data-related challenges can be addressed through 
approaches such as data augmentation and preprocessing, multisource data 
integration and fusion, and sensitivity analysis. (2) Data scarcity for pretraining 
large models: biomedical data (e.g., compounds, targets, molecular interactions, 
and clinical trial data) are scarce and difficult to obtain, making pretraining large 
models a significant challenge. In the future, a combination of techniques such 
as cross-domain transfer learning, few-shot learning, and self-supervised 
learning can be employed to extract valuable information from limited data 
samples, maximizing model generalization and performance. (3) Privacy and 
compliance in health interventions: the field of health interventions requires 
large amounts of personal health data, which often contains sensitive informa- 
tion. Ensuring privacy protection and compliance with regulations is a major 
challenge. In the future, IDM models in life sciences can ensure data security 
and compliance by employing comprehensive strategies such as data anonym- 
ization, differential privacy, federated learning, encryption, and adherence to 
legal and ethical standards, thereby minimizing the risk of privacy breaches 
and misuse.

Healthcare 
Medicine is a cornerstone of human progress and well-being. FMs now pro- 

vide efficient, intelligent decision support for complex tasks such as early dis- 
ease screening and surgical planning by enabling unified solutions across 
text, images, and genomics with minimal task-specific data. 165,439,440 Below, 
we discuss how FMs are reshaping diverse healthcare domains across diag- 
nostics, medical imaging, and beyond. 

Advancing diagnostics via multimodal and genomic data integration. 
FMs show considerable promise in clinical diagnostics by combining vast med- 
ical knowledge with advanced reasoning capabilities. LLMs such as GPT-4 have 
exhibited near-expert performance in tasks like medical question answering and 
case analysis. 441–443 In multiple evaluations, LLM-driven DSSs have equaled or 
even outperformed clinicians in specialized diagnostic settings, highlighting 
their versatility and potential for widespread application. 444 

Despite these gains, reliability challenges persist. For instance, prominent 
models may occasionally produce factually inaccurate responses, underscor- 
ing the importance of human oversight in diagnostic workflows. Retrieval- 
augmented methods offer a compelling solution by grounding outputs in 
trustworthy sources, effectively reducing error rates and bolstering model cred- 
ibility. 445,446 Moreover, multimodal models now integrate textual data with real- 
time imaging or video to generate more holistic diagnoses. This is particularly 
vital in fields such as surgical pathology and retinal images, where contextual 
cues from multiple data streams can sharpen diagnostic precision. 447,448 

Beyond text and images, FMs have made inroads in waveform data, radi- 
ology, and histopathology data for diagnosis. For example, FMs have been 
developed to diagnose cardiovascular diseases using ECG data. 449 MedSAM 

excels at universal segmentation, adeptly identifying anatomical regions and le- 
sions across modalities, 450 while VLMs generate synthetic radiological images 
to augment training data for resource-constrained settings. 451 Within oncology, 
models like MUSK integrate pathology images with patient data to pinpoint mo- 
lecular biomarkers and gauge treatment response, thereby enhancing diag- 
nostic specificity. 452 Similarly, large-scale histopathology applications have 
demonstrated the ability to accurately classify common and rare cancers and 
adapt to different staining protocols. 453,454
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Moreover, emerging genomic and multi-omics FMs further expand diag-
nostic capabilities. 455 The Nucleotide Transformer captures meaningful DNA
sequence representations useful for detecting specific variants in low-data sce-
narios, 456while scGPT integrates single-cell transcriptomics and proteomics for
cell-type identification. 457 Likewise, GET leverages chromatin accessibility data
to reveal previously unknown regulatory elements linked to disease states. 458

Genomic FMs 459 enhances personalized gene-expression prediction from
DNA sequences. Together, these achievements illustrate the synergy of large 
models in diagnostics, harnessing multimodal data to increase diagnostic accu- 
racy and reduce clinician workloads. 

Optimizing treatment strategies and medication management. FMs are 
playing an increasingly influential role in guiding therapeutic strategies. By 
distilling a broad spectrum of clinical data, such systems can assist with treat- 
ment plan selection, medication management, and complex medical decisions. 
For instance, recent research underscores the utility of LLMs in generating 
actionable guidance for oncologists by correlating genomic data with standard- 
ized treatment protocols. 442,444 

In high-risk environments like surgery, integrated large multimodal models pro- 
vide a comprehensive view of patient status by interpreting textual records, imag- 
ing, and even real-time operative video. 447 This holistic perspective can potentially 
refine intraoperative decisions, although rigorous domain-specific validation re- 
mains paramount to guarantee patient safety. Oncology, in particular, benefits 
from vision-language approaches such as MUSK, which synchronizes imaging 
evidence with patient history to deliver more targeted therapeutic options. 452 

Treatment support also extends to pharmacogenomics and targeted thera- 
pies, where multi-omics FMs inform drug-efficacy predictions and toxicity 
risks. 457,458 By consolidating diverse data types—from genomic variants to pro- 
teomic signatures—these models can uncover individualized treatment path- 
ways that traditional siloed systems might overlook. Although these applica- 
tions have shown promising results, continued refinement through real-world 
validation is essential to promote safe and effective model deployment. 

Enhancing personalized prognostic predictions and treatment 
responses. Prognostic assessment forms another critical domain where 
FMs exhibit growing influence. Their ability to fuse data across imaging, pathol- 
ogy, and multi-omics permits more nuanced predictions of clinical outcomes, 
such as survival rates or recurrence risks. In oncology, for example, LLMs not 
only offer specific diagnostic insights but can also project disease progression 
timelines, guiding clinicians in discussing treatment goals and end-of-life care 
with patients. 444 

Multimodal approaches strengthen prognostic modeling by considering 
imaging features, genetic information, and electronic health records. Vision-lan- 
guage systems—initially aimed at diagnosis—now provide risk estimations for 
treatment response, shedding light on the likely success of targeted thera- 
pies. 450,451 Meanwhile, multi-omics models such as GET predict gene-expres- 
sion changes with high fidelity, offering clues about disease trajectories and po- 
tential intervention points. 458 These capabilities can be extended to broader 
population health questions, including public health surveillance and risk strat- 
ification for chronic conditions. 
Furthermore, LLMs trained on extensive clinical texts help forecast outcomes 

such as length of hospital stay, readmission rates, and complication probabili- 
ties. 460,461 By correlating longitudinal clinical data with patient histories, these 
models can highlight patients at higher risk for poor outcomes. As with diag- 
nosis and treatment, the path to robust real-world performance hinges on care- 
ful calibration to mitigate data shifts and potential biases, necessitating ongoing 
oversight and validation. 

Streamlining clinical workflow and resource management with FMs. Effi- 
cient clinical workflow management and automation remain top priorities in 
modern healthcare, where administrative burdens can detract from patient 
care. FMs excel in summarizing patient data, automating documentation, and 
flagging key clinical concepts. For instance, GatorTron—trained on extensive 
clinical corpora—achieves state-of-the-art performance in medical question 
answering and semantic similarity tasks, underscoring the power of scale in 
reducing repetitive documentation workloads. 462 
Beyond straightforward information extraction, domain-fine-tuned LLMs 

facilitate classification tasks with impressive accuracy, including the categori- 
zation of specific conditions such as musculoskeletal pain, thereby streamlin- 
ing triage and referral processes. 463 These models also generate concise clin- 
ical summaries for patient records, pathology reports, and radiological findings.

In certain metrics, their summarization quality rivals or surpasses that of hu- 
man experts. 464 

Resource management stands as another area of promise. Large models 
have shown aptitude for predicting hospital throughput metrics, including read- 
missions, length of stay, and quality-of-care indicators. 460,461 By automatically 
integrating patient data from disparate sources, these systems can enable 
more proactive scheduling, optimize bed allocation, and support cost-efficient 
healthcare delivery. Although the benefits of such automation are evident, is- 
sues related to data privacy, model interpretability, and fairness must remain 
at the forefront of clinical implementation efforts. 

Challenges and perspectives. Despite their undeniable potential, FMs 
encounter several implementation hurdles in healthcare settings. Ethical con- 
cerns emerge from potential biases in training data, especially if models pre- 
dominantly learn from Western-centric datasets, raising the risk of suboptimal 
or inequitable outcomes in other demographic or geographic populations. 465,466 

Ensuring clinical reliability also remains problematic, as model performance on 
standardized evaluations does not always translate seamlessly to the variability 
of real-world practice. 467,468 

Regulatory considerations add another dimension of complexity, as health- 
care institutions, clinicians, and AI developers face evolving liability issues. While 
AI-assisted systems could mitigate some legal risks for individual practitioners, 
manufacturers and organizations must navigate uncertain regulatory frame- 
works and reimbursement models for novel AI solutions. 469 The path forward 
calls for transparent model architectures, continual diversification of training 
data, and human-AI collaboration guidelines that emphasize safety and 
accountability. 470 Ongoing clinical assessments, including automated-expert 
evaluations and prospective trials, will be crucial in validating both diagnostic 
and therapeutic claims. 471 In this way, FMs can reinforce—not supplant—clini- 
cians’ expertise, offering scalable, data-driven insights that enhance patient out- 
comes while adhering to rigorous standards of care.

Dentistry 
AI models trained on healthcare data have demonstrated significant poten- 

tial in disease diagnosis, treatment planning, and health management, particu- 
larly in dentistry. Within this field, FMs and IDSs are poised to transform clinical 
workflows by enhancing precision diagnostics, optimizing treatment strate- 
gies, and improving patient outcomes. This section examines the opportunities, 
existing applications, critical challenges, and future directions of FMs and IDSs 
in dental practice. 

Basic principles of FMs and intelligent decisions for healthcare in 
dentistry. The common healthcare foundation model (HFM) can be flexibly 
applied to multiple medical tasks, and processes multiple medical data modal- 
ities. In contrast to traditional specialized AI models that focus on specific med- 
ical tasks or data modalities of interest, the healthcare FM has demonstrated 
remarkable success in the related subfields of healthcare AI, such as language, 
vision, bioinformatics, and multimodality. 472 FMs have demonstrated excep- 
tional performance in medical text processing and discussion tasks after 
learning extensive medical language data. 441,473 The VFM has shown impres- 
sive promise in medical images. Modality, organ, task, and specific VFMs 
have demonstrated their general performance and flexibility in terms of 
possible medical situations. 474 The bioinformatics FM has given us opportu- 
nities for situations involving protein sequences, DNA, RNA, and other ele- 
ments. 456,475 The multimodal foundation model (MFM) has offered a more effi- 
cient method by combining data from several modalities, which can interpret 
different medical modalities and carry out activities that depend on numerous 
modalities. 165,476 As a result, these models have advanced the healthcare field 
by offering a basis for tackling intricate clinical problems and enhancing the ef- 
ficacy and efficiency of medical or dental procedures, such as free-text or nurse 
notes, electronic health record notes, reports, radiological images, laboratory 
tests, dental imaging, audits, digital scanning information, integrated genomics 
data, and referential clinical and research archives. 477 For medical decision- 
making, clinicians consider the patient’s previous and present medical history, 
the evidence that is currently accessible from medical literature, and their 
domain competence and experience. 478 

FMs in diagnostic and prognostic advancements in dentistry. Medical 
diagnosis is crucial for preventing disease progression and improving treatment 
outcomes. Medical diagnosis by FM predicts the most probable disease based
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on medical examinations and patient accounts, which is essential for prompt 
treatment and the avoidance of consequences. 479 Recently, FMs have been uti- 
lized to improve medical diagnosis and have exhibited generalist capabilities 
across several disorders, including dental problems. 480–482 A study examined 
ChatGPT-4’s capabilities as an intelligent virtual assistant in the field of oral sur- 
gery. A professional oral surgeon assessed ChatGPT-4’s answers to 30 oral sur- 
gery-related inquiries, identifying discrepancies and yielding a 71.7% accuracy 
rating. 483 This highlights ChatGPT-4’s role as an adjunctive resource for clinical 
decision-making in dentistry, while underscoring that it cannot supplant the pro- 
ficiency of a skilled oral surgeon. VFMs provide automated disease screening 
on select low-risk images and aid in the detection and identification of ambig- 
uous target anatomies, thereby alleviating the burden of radiologists and 
enhancing their diagnostic accuracy. Traditionally, caries-related diagnoses 
are conducted by dentists using visual and tactile examination. A prompt yet 
thorough assessment of oral health concerns is essential prior to any treatment 
strategy. Diagnosing dental diseases may need considerable effort and time 
from specialists, sometimes utilizing X-ray scans and cone-beam CT (CBCT) 
to arrive at a valid judgment. Several studies have investigated the efficacy of 
AI-assisted models in diagnosing caries, periodontitis, medication-related os- 
teonecrosis, maxillofacial bone fractures, oral squamous cell carcinoma, and 
temporomandibular disorders. 484–489 These ailments can be identified by med- 
ical imaging. Segmentation and identification of VFMs furnish positional infor- 
mation in medical imaging, aiding radiologists in delineating images into se- 
mantic regions and identifying areas of interest. 490,491 

Certain VFMs have demonstrated encouraging outcomes in illness prog- 
nosis, capable of supplying biomarkers to anticipate the probability or antici- 
pated progression of a disease. Tooth GenAI helps with early intervention for 
diseases like periodontitis by forecasting tooth-bone loss. It evaluates patient 
data to forecast bone loss over 3 and 6 months using support vector regression. 
The model processes the personal data supplied by users and uses it to make 
predictions. Findings, including illustrations, support the design of treatments 
and the tracking of the course of diseases. 492 

Advancing personalized treatment planning via FMs in dentistry. FMs, 
which create plug-and-play medical image-processing tools for surgical plan- 
ning or support without requiring extra data gathering and model training 
typical of conventional paradigms, have potential applications in the field of 
surgery. Personalized treatment planning has emerged as a key strategy for 
enhancing patient outcomes as development of digital dentistry has 
advanced. HFMs can help with individualized planning. Surgeons can visualize 
pertinent structures for surgical planning by using 3D segmentation VFMs to 
distinguish 3D objects from medical imaging such as CT and MRI. A segmen- 
tation VFM may also recognize instruments or relevant areas in endoscopic 
views during the surgical procedure, which helps the operation and enhances 
surgical results. 493 

For dental implant design and placement planning, AI can automatically 
create optimal implant designs and placement plans to increase implant suc- 
cess rates, based on patients’ CBCT data, considering variables including 
bone density, adjacent tooth positions, and occlusal relationships. 494,495 The 
main use of AI has been found in the segmentation of anatomical landmarks, 
which is one of the processes in the construction of virtual patients. Virtual 
implant implantation still requires the development and scientific validation of 
a fully automated digital approach. 496 Another important choice when creating 
an orthodontic treatment plan is whether orthognathic surgery is required. 
Different practitioners may have different opinions about whether orthognathic 
surgery is necessary, 497 and there are no set standards for determining whether 
the surgery is necessary. However, there are methods that try to assist clini- 
cians by using AI algorithms. 498,499 Choi et al. reported that AI could not only pre- 
dict the indication for orthognathic surgery but also the indication for premolar 
extraction with a success rate of about 91%. 500 It is obvious that such innova- 
tion would make it easier for surgeons and dental specialists to complete the 
presurgical planning phase for predictable and timely dental therapy. 

Intelligent decision-making technologies in dentistry. With the onset of 
the digital era in dentistry, the integration of IDM technologies has progressively 
demonstrated significant benefits. These innovations are now routinely em- 
ployed across various domains, including orthodontics, the design of removable 
partial dentures in prosthodontics, and predicting postoperative outcomes in 
complex maxillofacial reconstruction. 501,502 More recently, the advent of the 
PUMCH therapy (photoacoustic-steaming unite minimal-invasive chemome-

chanical-preparation hydramatic-obturation) has provided a creative idea for 
endodontics. 503 The incorporation of automated endodontic instrumentation 
further enhances the scope of IDM within this specialty, offering improved treat- 
ment convenience and predictability. 
As clinical data accumulation and machine-learning capabilities advance dur- 

ing automatic therapy, sophisticated modeling tools are now enabling clinicians 
to optimize treatment plans by aligning tooth morphology with specific thera- 
peutic parameters. This approach fosters more evidence-based, patient-centric 
decision-making. 504 Additionally, these modeling systems enhance the ability to 
predict post-treatment resistance loss, thereby aiding in the longitudinal assess- 
ment of treatment efficacy. The integration of these tools also strengthens the 
communication between clinicians and patients, facilitating a more informed 
discussion on potential outcomes and the anticipated long-term effects of treat- 
ment. 505 Furthermore, the predictive capabilities of these systems support early 
intervention strategies, thereby improving the precision and timeliness of clin- 
ical decision-making. 

Challenges and perspectives. An HFM requires substantial medical data 
for training; hence, how to integrate and share data while ensuring privacy 
and security remains a pressing ethics issue. Healthcare data must be ethically 
obtained. Scanning the body provides healthcare data, yet CT imaging might 
injure the body. 506 While such damage may be minor for illness treatment, scan- 
ning human bodies for AI training datasets is unethical. These specific data will 
not be readily available for extensive datasets, as observed in some current 
data-gathering paradigms, preventing HFM task training. Moreover, ethics limit 
healthcare data use and distribution. Healthcare includes delicate and even 
dangerous body data, including genetic data. Data use and distribution are 
strictly regulated by law and data owners. It is unsafe when accumulated unreg- 
ulated and used to train FMs. Due to the uncontrollable external environment, 
HFM use will increase this risk. 507–509 

An HFM needs to operate across multiple data modalities 510 ; however, the 
diverse origins of health data can lead to significant differences in data formats 
and quality across institutions. The characteristics of healthcare data differ 
among populations, regions, and medical institutions, resulting in heteroge- 
neous data in the practical use of HFMs. 511 The evolution of FMs signifies a 
transition from specialized tasks to generalized duties. It equips AI with a 
broader capacity to tackle diverse requirements and intricate surroundings in 
the actual world. FMs also possess the capacity to revolutionize healthcare. 
The advanced HFMs will seamlessly analyze various data modalities, acquire 
new tasks dynamically, and utilize domain knowledge, presenting prospects 
across an extensive array of medical jobs. Notwithstanding their potential, 
HFMs provide distinct obstacles. Their remarkable adaptability complicates 
full validation, and their scale can lead to heightened computational expenses. 
HFMs offer unparalleled opportunities for healthcare, assisting clinicians with 
various critical tasks and alleviating the administrative workload on clinicians 
to enable greater patient interaction.

Urban science 
FMs have significantly advanced decision-making in urban science by 

enhancing various aspects of urban planning, policy-making, and management 
through their capacity to process vast amounts of data, identify patterns, and 
generate actionable insights. 512 Here we outline several ways in which they 
contribute to urban science, from prediction to decision-making, along with 
related literature or papers for each point. 

FMs enhances urban predictive modeling. FMs empower urban scientists 
to predict urban events with high accuracy, 513 such as traffic congestion, pollu- 
tion levels, and energy demand. By leveraging both historical and real-time data, 
FMs facilitate improved decision-making for both short-term and long-term 

planning. Recent literature has demonstrated that LLMs can serve as zero-shot 
forecasters for predictive learning tasks, 116,514 particularly in urban scenarios. 
By designing novel tokenizers and in-context learning techniques, LLMs demon- 
strate superior forecasting performance against conventional statistical 
methods such as ARIMA. However, due to the challenges LLMs face in inter- 
preting complicated patterns of numerical data, researchers have explored 
fine-tuning LLMs for time-series analysis 120,515,516 and urban spatiotemporal 
forecasting. 517,518 The primary approach involves fine-tuning specific modules 
within LLMs, such as layer normalization and position encodings, or training 
additional neural layers (e.g., embeddings and prediction heads) to better align
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with downstream applications. Other methodologies 519 investigate the trans- 
formation of time-series data into a fixed vocabulary through techniques like 
scaling and quantization. By tokenizing the time-series values in this manner, 
these approaches enable the application of existing LLM architectures, which 
are trained on the tokenized sequences using cross-entropy loss. 
In addition to leveraging pretrained LLMs, another approach is to train an FM 

from scratch using cross-domain urban data, including transportation, energy, 
climate, air pollution, and so forth. This trend is exemplified by the introduction
of UniST, 520 a universal model designed for general urban spatiotemporal pre-
diction across a wide range of scenarios. The core idea behind UniST is to utilize 
diverse spatiotemporal data from various urban contexts and conduct effective 
pretraining to capture complex spatiotemporal dynamics. For downstream ap- 
plications, UniST enhances its generalization capabilities by incorporating 
knowledge-guided prompts. Subsequent works have explored similar ap- 
proaches in predictive learning, applying these methods to a broader spectrum 

of urban data, such as human trajectory data 521,522 and remote sensing
data. 523,524

FMs integrate multimodal data for accelerated plant breeding. FMs are 
playing a transformative role in advancing interpretable and transparent deci- 
sion-making in urban science. By leveraging vast amounts of textual, numerical, 
and spatial data, LLMs can facilitate more informed, data-driven decisions that 
are easier for both experts and the public to understand. These models 
contribute to the interpretability of urban systems by providing clear explana- 
tions for complex decisions, enhancing transparency, and fostering greater 
public trust. In particular, FMs support decision-making processes that are 
both efficient and accessible, whether through human-computer interaction, 
participatory planning, or evaluation/validation frameworks. 
To illustrate the first category, consider the application of traffic-light control, 

where LLMs contribute to adaptive data-driven traffic-light systems that opti- 
mize traffic flow based on real-time environment and traffic patterns. 525 These 
models can analyze sensor data, weather conditions, and urban mobility trends 
to adjust signal timings dynamically, aiming to reduce congestion and improve 
traffic safety. By providing interpretable insights into how decisions are made (e. 
g., why certain signal changes were triggered), LLMs promote a more trans- 
parent approach to traffic management. This level of explainability ensures 
that both urban planners and the public can understand the rationale behind 
traffic control measures, fostering trust in the system and its ability to respond 
to changing conditions. 
In the second category, FMs function as agents that simulate human 

behavior to inform urban decision-making. For example, in participatory urban 
planning, these models integrate diverse data sources—such as city plans, com- 
munity feedback, and environmental reports—to guide decisions in a manner 
that is both data-driven and transparent. By processing large-scale public in- 
puts, FMs can identify key trends, priorities, and concerns within communities, 
helping planners align urban developments with public needs. Furthermore, 
FMs generate accessible explanations of planning decisions, ensuring that 
complex policies are clearly communicated to the public. This transparency em- 
powers citizens to engage more meaningfully in the planning process, knowing 
their voices are heard and their perspectives considered. A recent study 526 dem- 
onstrates an innovative approach to participatory urban planning using FMs as 
agents. This framework involves LLM agents simulating both urban planners 
and residents with diverse profiles. The process begins with the planner drafting 
an initial land-use plan, followed by a simulated discussion among residents, 
who provide feedback based on their unique needs. To enhance the efficiency 
of these discussions a fishbowl mechanism is employed, allowing a subset of 
residents to engage in conversation while others listen. The planner then revises 
the plan based on this input, creating a more inclusive and responsive urban 
planning process. 
Within the last class, FMs significantly contribute to policy evaluation and vali- 

dation by leveraging their natural language understanding and reasoning capa- 
bilities. They assist in contextual analysis, offering concise policy summaries 
and retrieving relevant literature for informed decision-making. 61 LLMs enable 
scenario simulation, generating hypothetical outcomes and stakeholder per- 
spectives to anticipate societal responses. 13 Additionally, they analyze public 
sentiment from surveys or social media to align policies with public opinion. 
In validation, FMs identify logical inconsistencies, cross-compare policies for 
best practices, and evaluate inclusivity to ensure fairness. They address ethical 
concerns by highlighting biases and unintended impacts, supporting equitable

policymaking. Routine tasks like document parsing, data extraction, and draft- 
ing evaluation reports are automated, improving efficiency. 527 By facilitating 
iterative refinements, LLMs act as dynamic tools for refining policies and moni- 
toring updates, ensuring adaptability and robustness in policy-making 
processes. 528 

Challenges and perspectives. The application of FMs in future urban 
governance and decision-making is poised to bring broad and profound social 
impacts. FMs lay a solid foundation for the precise, intelligent governance and 
decentralized sustainable development of cities. For example, FM-based intelli- 
gent transportation systems have the potential to achieve real-time and 
comprehensive situational awareness of urban traffic conditions and enable 
flexible control of traffic signals in response to changing road conditions, signif- 
icantly alleviating traffic congestion in major metropolitan areas and thereby 
reducing vehicle emission levels substantially. The implementation of FM- 
based intelligent urban planning systems can significantly reduce expert 
knowledge biases, providing decentralized scientific decision support for urban 
development. Furthermore, simulation experiments in virtual environments 
effectively avoid unnecessary material and energy waste caused by short- 
sighted planning in the real world. Overall, applications based on FMs will 
lead traditional cities toward transformation to smart cities, markedly reducing 
the workload of urban management decision-making departments and allowing 
them to focus more on human care within cities. 
In addition to the positive societal impacts mentioned above, the application 

of FMs in cities may also raise some concerns. For instance, data privacy issues 
arise with the use of powerful FM applications that require the collection of large 
amounts of data for training, including personal trajectory data in urban areas. It 
is essential to anonymize and protect these data to prevent the potential 
leakage of significant amounts of personal privacy. Another challenge is align- 
ing FM technology with societal values in urban governance. The complex de- 
mographic structure of metropolitan areas leads to diverse demands in city life 
based on factors such as gender, race, and income levels. This diversity can 
result in the theoretical optimal solutions not necessarily aligning with the social 
and cultural realities of the real world. Therefore, addressing the alignment of 
FM applications with society is crucial for their widespread adoption among 
diverse groups within cities.

Agricultural science 
Agriculture serves as the cornerstone of food security, social stability, and 

economic growth. FM-based IDM empowers farmers with better-informed 
choices, optimizes resource allocation, and enhances overall farm manage- 
ment, potentially transforming the agricultural sector by boosting productivity, 
sustainability, and decision efficacy. 

FM-driven crop management: Insights into precision decisions. The core 
concept of precision agriculture and intelligent agriculture is to use high-tech 
methods to realize the refined management of agricultural production. 529 AI 
is gradually changing the production mode of traditional agriculture and 
improving the productivity and sustainability of agriculture. In this context, 
FMs have become the key method for smart crop management by providing 
intelligent decision support and optimizing resource allocation. 530 Combining 
agricultural remote sensing data 531 and ground sensor data, FMs show great 
potential through fine-tuned modeling in the fields of crop growth monitoring, 
precision agriculture technology, and pest and disease monitoring and control. 
Specifically, FMs realize real-time monitoring of crop growth conditions by 

integrating weather patterns, soil properties, and remote sensing data, thereby 
identifying potential crop problems and providing adjustment solutions 
promptly. 532 Combined with historical yield data, FMs can also accurately pre- 
dict crop yields to assist in agricultural planning and food security. 533,534 In pre- 
cision agriculture technology, FMs can accurately analyze weather and soil data 
to make personalized fertilization and irrigation decisions. 535 This intelligent 
resource management ensures that the nutrients and water needed for crop 
growth are optimally rationed, avoiding over-fertilization and -irrigation. For 
pest and disease monitoring and control, traditional visual methods usually 
rely on single-image data, which are limited by the quality of the data and insuf- 
ficient to make decisions on disease-spread prediction and control mea- 
sures. 536 With powerful multimodal learning ability, FMs can quickly identify 
the types and severity of crop pests and diseases and provide targeted preven- 
tion and control suggestions. 537 The advantages of an FM in efficient
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processing and understanding of multimodal data enable it to make compre- 
hensive analysis and decisions in complex agricultural production environ- 
ments, thus promoting the further development of smart crop management. 
The application of FMs not only optimizes the agricultural production process 
but also provides strong support for the sustainable development of 
agriculture. 538 

FMs empower plant breeding. Plant breeding plays a pivotal role in crop 
improvement, with the primary objective being the selective enhancement of 
traits such as yield, disease resistance, and stress tolerance. 539 Traditional plant 
breeding relies on phenotypic selection and genotypic analysis, typically con- 
ducted through field trials, breeding, and progeny selection. However, this 
approach faces limitations, including long breeding cycles, high resource con- 
sumption, and the complexity of environmental factors, which create bottle- 
necks in improving breeding efficiency. Against this backdrop, and in conjunc- 
tion with the latest advances in the field of AI, intelligent plant breeding has 
emerged as a methodology capable of combining multidimensional data to 
optimize crop varieties using AI, big data, and advanced genomics tech- 
niques. 540 Traditional machine-learning methods, however, often struggle 
with the complexities of spatiotemporal omics data. MFMs provide a promising 
solution. 541 

As a new class of FMs, MFMs can process multiple data modalities simulta- 
neously, such as text, images, video, audio, and structured data (e.g., genomic 
sequences or sensor data). 165 This enables them to effectively capture and 
analyze the interactions between genotype, phenotype, and environment. More- 
over, MFMs are capable of cross-modal tasks, offering broader applicability, 
such as generating images from text (e.g., generating predicted crop pheno- 
types based on genotype descriptions). Notable models in this field include 
CLIP 14 and BLIP (bootstrapping language-image pretraining). 542 By efficiently 
handling heterogeneous datasets, MFMs significantly improve the accuracy 
of phenotype prediction, allowing breeders to more precisely forecast crop per- 
formance and optimize trait selection, thus accelerating genetic gains. In the 
future, MFMs are expected to play an increasingly crucial role in crop breeding, 
transforming the landscape of agricultural innovation. 

FM-driven livestock farming: Health monitoring to full-chain 
optimization. The continuous development of AI and FM technologies is 
driving modern livestock farming toward greater intelligence, precision, and ef- 
ficiency. 543,544 The integration of AI in livestock farming, especially in areas such 
as animal health monitoring, disease prediction, and resource allocation optimi- 
zation, 545–547 shows immense potential. CNNs realize the detection and early 
warning of abnormal animal behavior by processing and analyzing animal im- 
age and video data. GNNs consider each livestock as a node on the graph 
and the interaction or propagation pathways between them as edges, which 
can effectively capture complex relational structures and thus improve the ac- 
curacy of health monitoring. By improving management efficiency and opti- 
mizing resource distribution, AI significantly contributes to reducing production 
and operational costs. Currently, deep-learning decision models in livestock 
farming often focus on specific scenarios, such as predicting animal health 
based on changes in temperature, activity levels, and appetite. 548 However, 
these decision models often rely on human expertise and historical data for 
training, which limits their ability to address cross-disciplinary knowledge inte- 
gration and complex data challenges. 549 In contrast to traditional models, 
FMs effectively address these challenges by integrating knowledge from multi- 
ple disciplines and learning from large-scale multimodal data. 50 FMs are 
capable of processing and integrating multidimensional complex information 
across different fields, thereby providing more accurate and comprehensive 
IDM. FMs not only enhance the accuracy of health monitoring and disease pre- 
diction in livestock farming but also optimize resource allocation, driving the 
precision and intelligence of agricultural production management. As a result, 
the FM has become a key tool in current smart livestock farming for improving 
management efficiency and optimizing resource allocation. 

Challenges and perspectives. In the next decade, we will continue to 
witness the development of emerging AI methods and IoT technologies. These 
advancements will contribute to optimal decision-making and enhance the in- 
telligence of agricultural production and management. Currently, we face 
numerous challenges in effectively integrating these cutting-edge technologies 
into agricultural production, especially in interdisciplinary system solutions and 
the realization of low-cost AI applications in agriculture. There are still techno- 
logical barriers to the interdisciplinary integration of fields such as agriculture,

computer science, and environmental science. Finding ways to combine the 
practical needs of agriculture with AI technologies to design intelligent systems 
that are both efficient and adaptable to production rules requires substantial 
innovation and research. At the same time, the high cost of AI technology 
and the differing needs of small-scale farming economies make low-cost appli- 
cations a central challenge in promoting smart agriculture. To overcome these 
challenges, in addition to technological innovation, there is a need to develop 
more cost-effective hardware devices and simplified interfaces as well as to 
tailor application solutions to different regions. Government policy support, 
the establishment of industry standards, and collaboration between agricultural 
enterprises and technology companies will also play a crucial role in promoting 
technology adoption and reducing costs. With advancements in technology and 
decreasing costs, smart agriculture will achieve precision, intelligence, and sus- 
tainable development. This will enhance the efficiency of the global agricultural 
industry and contribute to food security and the sustainable growth of rural 
economies.

Economic science 
In economic science, FMs fuse heterogeneous market signals to deliver 

faster risk assessment, sharper investment insights, and more responsive 
compliance monitoring, 550–555 as shown in Figure 7. Their generalization 
across asset classes and scenarios outperforms rule-based tools, driving inno- 
vation in credit scoring, inclusive finance, and strategic decision-making. 

FMs empower credit assessment and inclusive finance. Traditional credit 
evaluation often depends on manual expertise and offline data collection, result- 
ing in time-consuming processes, information asymmetry, and limited 
coverage. In contrast, FM-based decision intelligence can efficiently integrate 
and semantically analyze extensive heterogeneous data sources—such as 
text, images, transaction histories, and social media information—to construct 
more accurate and dynamic credit profiles. 556 With capabilities such as auto- 
mated factor discovery, generative dialog, and continuous monitoring of bor- 
rowers’ credit behavior, FMs enable financial institutions to reduce operational 
costs, expedite lending decisions, and extend tailored financial services to small 
and micro enterprises as well as underserved customer segments. This en- 
hances the reach and accessibility of inclusive finance. 557,558 

Investment decision support and market analysis by FMs. The application 
of FMs to securities investment and asset allocation is gaining momentum. 
Beyond traditional quantitative strategies, integrating FM decision intelligence 
facilitates the incorporation of diverse information sources, including macro- 
economic indicators, industry reports, corporate disclosures, market news, 
and sentiment data. Utilizing advanced natural language understanding and 
multimodal learning techniques, FMs provide a more comprehensive depiction 
of market dynamics and risk profiles. 559–561 Additionally, generative AI tech- 
niques can produce a wide array of trading strategy suggestions and early warn- 
ing signals, empowering analysts, portfolio managers, and traders to optimize 
asset allocation and pricing decisions with greater precision. 562 

The application of FMs in risk control and regulatory technologies. 
Enhancing risk prevention and ensuring regulatory compliance are crucial for 
maintaining stable financial markets. FM decision intelligence improves both 
the early detection and real-time monitoring of abnormal transactions, 
fraudulent disclosures, and illicit financing activities by leveraging deep- 
learning, graph-based knowledge representations and anomaly detection algo- 
rithms. 563,564 Furthermore, regulatory authorities can utilize FMs to implement 
“intelligent regulation,” automating compliance checks, tracking policy 
execution, and swiftly adapting supervisory strategies to emerging industry de- 
velopments. 565 International institutions such as the Monetary Authority of 
Singapore, the UK Financial Conduct Authority, and the US Securities and 
Exchange Commission have actively experimented with FM- and AI-driven 
regulatory technologies, providing valuable references for enhancing domestic 
supervisory frameworks. 

FMs empower emerging financial services and business 
reconfiguration. FM decision intelligence also supports the development of 
new financial service models. Integrating intelligent contracts, digital identity 
verification, and distributed ledger technologies establishes the infrastructure 
for streamlined financial processes. 566,567 By introducing natural language inter- 
faces, customers can engage in “human-like” interactions, applying for loans, 
wealth management products, or insurance claims without relying on
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text-based inputs, thereby significantly improving user experience and opera- 
tional efficiency. Additionally, combining FMs with federated learning, privacy- 
preserving computation, and multiparty secure computation enables secure 
data collaboration across institutions. This approach safeguards user data pri- 
vacy and security while facilitating decision sharing at scale, ultimately 
enhancing resource allocation and market efficiency. 568 

Challenges and perspectives. Despite rapid advancements, the deep inte- 
gration of FM decision intelligence into finance presents several challenges. 
Model biases, data-quality issues, privacy protection, regulatory gaps, and 
ethical concerns remain pressing issues that require collaborative solutions 
across technological, institutional, and policy dimensions. 569,570 Future 
research will focus on developing more trustworthy and explainable founda- 
tion-model decision frameworks, enhancing robustness under anomalous con- 
ditions, and ensuring dynamic adaptability to evolving regulatory policies. 571 By 
establishing a robust policy and regulatory ecosystem, it is possible to balance 
fostering innovation with controlling risks, thereby promoting both service effi- 
ciency and fairness while maintaining market stability and sustainable innova- 
tion in the financial sector.

Educational science 
FMs are reshaping educational science by powering adaptive tutoring, data- 

driven learning analytics, and equitable access to high-quality content, 50 as 
shown in Figure 7. Their multimodal reasoning and vast knowledge base sup- 
port personalized trajectories and real-time feedback that measurably boost 
learner engagement and outcomes. 

The application of FMs for personalized and adaptive learning. One key 
advantage of employing FMs in education lies in their capacity for personalized 
learning recommendations. By analyzing large volumes of student data, 
including performance logs, interaction histories, and assessment results, these 
models can infer individual learner profiles and suggest tailored instructional 
materials. For example, a language-based FM can dynamically adapt reading 
passages or prompts to a student’s current proficiency level, thereby maintain- 
ing an optimal challenge and minimizing frustration. 61,572 Furthermore, such 
models can identify gaps in student understanding and proactively provide tar- 
geted exercises or explanatory content, thus facilitating more efficient remedi- 
ation and improving retention rates. 
Beyond content adaptation, FMs support differentiated instruction by cater- 

ing to diverse learning styles and preferences. Visual learners, for instance, 
can benefit from models that generate infographics or interactive simulations, 
while auditory learners might receive content in the form of narrated explana- 
tions or podcasts. This level of personalization ensures that educational mate- 
rials are accessible and engaging to a broader range of students, thereby pro- 
moting inclusive education. 
Additionally, FMs enhance accessibility by supporting multiple languages 

and dialects, bridging language barriers, and making educational content acces- 
sible to non-native speakers and students with diverse linguistic backgrounds. 
They can also generate alternative content formats, such as braille, audio de- 
scriptions, and sign-language interpretations, accommodating different stu- 
dents. 573 Adaptive technologies powered by FMs provide customized learning 
paths and assistive tools, fostering an equitable learning environment where all 
students have the opportunity to succeed regardless of their unique 
challenges. 574 

For example, recently, FMs such as DeepSeek-v3 have been be leveraged to 
analyze students’ learning patterns and provide real-time feedback, enabling 
personalized tutoring experiences. For instance, by identifying each student’s 
knowledge gaps through data-driven assessments, the model tailors content 
delivery and practice exercises, facilitating targeted intervention from educa- 
tors. This approach not only improves overall learning efficiency and engage- 
ment but also contributes to more equitable educational opportunities by 
addressing individual needs. 

The application of FMs in intelligent tutoring and feedback systems. 
Another critical area of application involves intelligent tutoring systems (ITSs) 
and automated feedback mechanisms. Traditionally, providing high-quality, 
individualized feedback at scale has been a challenge. With FMs, however, 
ITSs can offer richer, more nuanced guidance. These systems can evaluate stu- 
dent responses to open-ended questions, highlight specific misconceptions, 
and present alternative solution strategies in real time. Moreover, by leveraging

decision-making capabilities, the systems can determine not only what feed- 
back to provide but also when and how to deliver it for maximum pedagogical 
impact. 575 

Advanced ITS powered by FMs can simulate one-on-one tutoring experi- 
ences, fostering deeper understanding through Socratic questioning and scaf- 
folded learning. For example, in mathematics education, such systems can 
guide students through complex problem-solving processes, offering hints 
and prompting reflections that encourage critical thinking and self-regulation. 
Additionally, automated grading systems can assess not only the correctness 
of answers but also the reasoning processes, providing comprehensive evalu- 
ations that support formative assessment practices. 
Furthermore, automated feedback mechanisms can support a wide range of 

subjects by providing instant, personalized feedback that helps students under- 
stand their mistakes and learn from them. This immediate reinforcement loop 
enhances the learning process and contributes to better academic perfor- 
mance and higher retention rates. 576 

The application of FMs for educators and institutional decision-making. 
The potential of FMs in education also extends to supporting teachers and 
educational administrators in decision-making processes. Intelligent systems 
built atop large models can assist in curriculum design by analyzing existing 
instructional materials, identifying coverage gaps, and recommending supple- 
mentary resources. They can also support student placement decisions and 
predict at-risk learners, enabling early interventions. 575,577 

Furthermore, FMs aid in professional development by providing personalized 
training resources for educators, identifying areas for improvement, and sug- 
gesting evidence-based teaching strategies. For administrators, these models 
streamline operational tasks such as scheduling, resource allocation, and policy 
formulation by analyzing institutional data and forecasting trends. 
Additionally, FMs facilitate data-driven decision-making by aggregating and 

analyzing vast amounts of educational data, providing insights that inform stra- 
tegic planning and policy development. This enables institutions to make 
informed decisions that enhance educational quality and operational efficiency. 
Moreover, these models support collaboration among educators by offering 

platforms for sharing best practices, resources, and innovative teaching 
methods. By fostering a collaborative educational environment, FMs contribute 
to the continuous improvement of teaching and learning processes. 

Challenges and perspectives. Looking ahead, the application of FMs in ed- 
ucation presents numerous opportunities for innovation and research. Future 
developments may focus on improving the interpretability and explainability 
of these models, enabling educators to understand and trust the AI-driven rec- 
ommendations and feedback. Additionally, integrating multimodal data sour- 
ces, such as behavioral analytics, biometric data, and contextual information, 
can enhance the models’ ability to provide holistic and nuanced support to 
learners. 
Interdisciplinary research that combines insights from education, cognitive 

science, and AI will be instrumental in advancing the effective use of FMs in 
educational contexts. Collaborative efforts can lead to the design of more so- 
phisticated and pedagogically sound AI systems that align with educational 
best practices and learning theories. 
Moreover, addressing the digital divide and ensuring equitable access to AI- 

driven educational technologies are critical for maximizing the societal benefits 
of FMs. Research initiatives aimed at developing low-cost, scalable solutions 
and promoting digital literacy among educators and students will contribute 
to more inclusive and widespread adoption of these technologies. In summary, 
the integration of FMs into educational contexts promises more adaptive, inclu- 
sive, and data-driven learning environments. By harnessing their decision-mak- 
ing capabilities, educators and institutions can significantly enhance teaching 
quality, learning personalization, and overall educational outcomes. However, 
addressing the associated challenges and ethical considerations is essential 
to realizing the full potential of these advanced AI systems in education.

RISKS AND CHALLENGES 
LLM-based agent security in decision-making 
As the development of LLMs has rapidly advanced in recent years, the LLM- 

based agent technique has been penetrating into the domain of decision-mak- 
ing. However, the current studies 578–580 disclose security issues in the LLM 

agent, which bring potential risks for decision-making, as shown in Figure 8.
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Referring to the recent investigation on LLM-based agents 578 and intelligent al- 
gorithm security, 581 we know that an LLM-based decision-making framework 
can comprise several components, namely user, predefined system prompt, 
memory retrieval, external environment (a set of toolkits), and others. Thus, 
the potential vulnerabilities and security threats can derive from these aspects. 
On the other hand, the security problem can also come from the interior of LLMs 
per se. Here, we unveil the security issues of decision-making from the aspects 
of both external risks and internal risks.

External risks from LLM agents 
During the chain of decision-making, the LLM agent may encounter the 

following attacks. (1) Prompt injection attacks: the attacker injects special in- 
structions to the original prompt and manipulates the model’s understanding, 
leading to erroneous output. 582–584 On the other hand, such prompt injection 
attack can also compromise the planning by manipulating the accessible 
external environment, i.e., various available auxiliary tools. 585,586 (2) Agent 
memory poisoning: unlike traditional data-poisoning attack during the training 
of deep learning, memory poisoning here is by injecting mischievous or 
misleading data into the retrieval-used database, by which the agent will pro- 
vide irrational decision planning or actions. 587,588 (3) Backdoor attacks on LLM 

agent: targeted on the plan of thought (PoT), the attacker first poisons a sub- 
set of the plan demonstration, wherein the backdoored planning step and ad- 
versarial target action are involved, then injects a trigger into the query 
prompt. 589–592 

Internal risks from LLMs. There also exist several internal security issues in 
LLMs that can induce decision failure. (1) Jailbreak attacks are similar to the 
traditional adversarial examples and launched by various specific strategies 
of prompt engineering through breaking the safety guard of LLMs, which leads 
to deceiving LLM into producing unexpected contents. 593–596 (2) Model interro- 
gation is a new threat toward LLM alignment; unlike a jailbreak attack requiring 
crafted prompts, it coerces LLMs to disclose harmful/unaligned response by 
forcefully outputting low-ranked tokens, i.e., the adversary needs to have prereq- 
uisite to access to the top-k token predictions at each output position of 
LLMs. 597 (3) In backdoor attacks, akin to backdoor risk in traditional deep 
learning, LLMs also confront such a threat of backdoor implantation, i.e., the ad- 
versary can embed a trigger discreetly into LLMs through fine-tuning the in- 
struction. 598–601 Resorting to such covert backdoor attacks, the adversary 
can deceive the LLM into producing planning/action responses that align 
with the adversary’s intention; this is critical to the decision-maker. 
Both the external and internal risks described above bring serious threats and 

risks to decision-making. To facilitate the practical applications in decision-mak- 
ing, we next review the defense countermeasures from two angles.

Mitigation in LLM agents. As aforementioned, a decision-making task usu- 
ally consists of several stages to infer planning/actions; thus, there exist several 
different corresponding defense policies. (1) Delimiters: the decision-makers 
can delimiter to encapsulate the query, with the purpose of solely implementing 
a query. 578 (2) Paraphrasing: the defender can reword the query and disrupt the 
special-character sequence against mischievous instructions or triggers. 602 (3) 
Shuffle: to defend against backdoor PoT, the procedure of PoT demonstration 
can be reordered randomly. (4) Memory-poisoning detection: compromised 
memory can be identified by measuring text perplexity or employing an LLM. 584 

Mitigation in LLMs. Given the complexity of LLMs, the defense in general 
needs comprehensive strategies to mitigate the adverseness. We summarize 
here the representative defense mechanisms. (1) Unbiased training: as afore- 
mentioned, there exists similarity between jailbreaking attacks and adversarial 
attacks, 603 one effective mitigation is to enhance and balance the training data- 
sets of LLMs, even conflating the mischievous instructions to run co-training. 
For example, adversarial training enables one to enhance the model’s robust- 
ness by introducing the adversarial examples as a training dataset against ad- 
versarial attacks. 604,605 (2) System prompt enhancement: one study 606 reported 
that a short system prompt can induce an increased rate of successful attack; 
therefore, the system prompt also needs to be robust. (3) Malicious-content 
filtration: some attacks bypass the security guard of the input stage but fails 
at the output stage, thus, countermeasures of output detection and mali- 
cious-content filtration are necessary during the chains of decision-making. 
To sum up, the LLM-agent-based decision-making is sophisticated at pre- 

sent, stemming from a set of components other than the LLM per se. Hence, 
the attacks are not only from the interior of the LLM but are also induced 
from the exterior of the LLM, which will cause severe threats and risks in the 
course of decision-making. To boost the practical applications of LLMs on de- 
cision-making, its security issues deserve more attention and effort in future.

Machine hallucination causality and mitigation 
Hallucination, which emerged in the NLP domain before the birth of LLMs, in 

general refers to generation of nonsensical or unfaithful responses to the pro- 
vided source content. 607 At present, given the versatility of LLMs, three cate- 
gories of hallucinations 608 can be drawn. (1) Input-conflicting hallucination: 
this category denotes that the generated content/response is not coincidental 
with user input; it can happen when there is a misunderstanding between LLM 

response and task instruction. (2) Context-conflicting hallucination: for an LLM, 
the produced content conflicts with its pregenerated contents. This occurs 
when the LLM cannot track the context or maintain consistency during the con- 
versation, possibly stemming from the insufficiency of long-term memory. 609

(3) Fact-conflicting hallucination: the content produced by the LLM is unfaithful

Figure 8. Risks and challenges in LLM agent The left of the three subfigures exhibits the algorithm-level attack and mitigation from perspectives of intrinsic vulnerabilities and 
interactive environment, e.g., jailbreak, backdoor, and model interrogation. The middle panel describes the application-level privacy and risk from the viewpoint of different disci- 
plinary fields, e.g., membership inference attack and information cocoon. The right panel presents system-level LLM trustworthiness and robustness from the aspects of PoT and 
intelligent decision-making environment, e.g., content-conflicting hallucination and fact-conflicting hallucination.
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to the established knowledge. This phenomenon derives from multifarious rea- 
sons introduced at different phases of LLM utility. 
The LLM hallucination is caused by several factors. (1) Noise-contained 

training data: as we know, LLMs currently are pretrained on trillions of tokens, 
some of which, however, come from fabricated, outdated, or biased informa-
tion. 610 For instance, the one study 611 pointed out that LLMs may misunder-
stand camouflaged correlated content as factual knowledge. McKenna and
Cheng 612 found a strong connection between hallucination and distribution of
training data and observed that LLMs are biased toward those samples that 
have attested in training data. (2) Error invisibility: given the fact that LLMs store 
a huge volume of knowledge, even the false information usually becomes plau- 
sible, which amplifies the difficulty of degrading the hallucination on input con- 
flict and context conflict. (3) Overestimation of LLM: Kadavath’s group 613 re- 
ported that an LLM has equal confidence in generating correct answers and 
incorrect answers, and Yin et al. 614 investigated the capability of representative 
LLMs to distinguish unknowable questions. Nevertheless, the experiments dis- 
closed that even advanced LLMs cannot handle questions well compared to hu- 
mans—that is to say, the LLM’s understanding of factual knowledge surpasses 
knowledge boundaries, i.e., overconfidence. 
Correspondingly, there also exist several mitigation countermeasures to 

hallucination. (1) Curation of pretraining corpora: as aforementioned, the noised 
data can deteriorate the knowledge of the LLM, so an effective and direct miti- 
gation is to curate the pretraining corpus and make such training data reliable 
and faithful. 615 For example, current LLMs attempt to collect pretraining data 
from credible sources. Llama 2 up-samples data from Wikipedia. (2) Supervised 
fine-tuning (SFT): SFT usually gets involved in two steps, namely, it first anno- 
tates massive task instruction data, then leverages maximum likelihood estima- 
tion to fine-tune the pretrained LLMs on the annotated data. Similarly, a valid 
countermeasure is also to curate such an instruction-tuning dataset. The hallu- 
cination-related benchmark TruthfulQA 616 verifies that SFT on a curated in- 
struction dataset would yield higher truthfulness and factuality compared to 
an uncurated dataset. (3) Decoding strategy designing (DSD): DSD aims to 
determine the means to select output tokens from generated probability distri- 
bution by models. 617 Lee et al. 618 propose a decoding-type “factual-nucleus 
sampling” to achieve a reasonable balance between diversity and factuality re- 
sorting to both “top-p” sampling and greedy decoding. Dhuliawala et al. 619 devel- 
oped a decoding framework, also known as chain-of-verification, to alleviate the 
hallucination. Li et al. 620 proposed an inference-time intervention strategy to 
improve the truthfulness of LLMs. (4) Uncertainty estimation: uncertainty can 
be referred to as a criterion for when to trust LLMs; therefore, it can well assist 
the user to filter out uncertain responses. Currently, three perspectives of uncer- 
tainty estimation are provided 621 in terms of model logit, verbalization expres- 
sion, and logic consistency. 
The discussion above presents the reasons why the hallucination can occur 

and the associated mitigations. For the decision-making life cycle, given that the 
hallucination may happen in the stages of pretraining, fine-tuning, and inference, 
we need to carefully figure out the appropriately aligned task-input instruction in 
addition to the extra operations on supervised fine-tuning, decoding strategies, 
and uncertainty estimation.

Data-privacy leakage 
In the deep-learning domain, we in general refer to dataset-privacy attack as 

membership inference attack (MIA), that is, given a certain record D, a deep- 
learning model trained on dataset Dtrain, the attacker intends to infer whether 
the target record D belongs to training dataset Dtrain or not. In traditional 
MIA, the commonly used method is to retrain a substitute model, 622 also called 
a shadow model, through resorting to feedback information from black-box ac- 
cess to the victim model. 
With the rapid development of data-privacy attacks, present-day LLMs also 

encounter such data-privacy leakage risks. For instance, Carlini et al. 623 dis- 
cussed how log-perplexity from LSTM trained for next token prediction can 
be manipulated to infer the sensitive sequences from the training dataset. Sub- 
sequently, the same authors 623 also proposed a data-extraction method from 

Transformer-based GPT-2 under the combination of perplexity queries and 
zlib entropy. Furthermore, referring to the language model GPT-2, Mattern 
et al. 624 worked out a neighborhood attack for MIAs through computing the 
loss difference between a given sequence and neighboring samples. Differently,

Meeus et al. 579 recently proposed a document-level MIA to today’s LLMs with 
7B+ parameters. 
To date, the studies of dataset-related privacy attacks is still limited, partially 

due to the extreme complexity of generating a substitute model in consideration 
of the necessities of trillions of tokens and billions of parameters. Nevertheless, 
during the procedure of decision-making, the decision-related training datasets 
are still worthy of protection against various membership inference attacks.

Social management and alignment risks 
LLMs have witnessed pervasive applications in multiple domains, especially 

in NLP and computer vision disciplines. Nevertheless, the misalignment with hu- 
man values causes serious problems to users and society, such as stereotyp- 
ing, 625 social bias, 626 illegitimate instruction, 595 and moral judgment, 627 among 
others. Aiming to align the human values, to date a set of benchmarks have 
been built to test diverse LLMs and rectify their misbehaviors from different per- 
spectives. For example, FLAMES 628 tackles both harmlessness principles and a 
unique morality with respect to Chinese values (harmony). ALI-Agent 629 em- 
ploys the autonomous capability of an LLM-powered agent to conduct adaptive 
alignment assessment on stereotyping, morality, and legality. Lee et al. 630 pro- 
pose an alignment benchmark for Korean social values and common 
knowledge. Fu et al. 631 investigated the misalignment in the aspect of culture 
heritage. From the above research, we can conclude that the LLMs are pene- 
trating daily life and identifying increasingly more problems and challenges in 
social management and human values. 

Technical vulnerabilities. With the development of information technology 
and social networks, the channels of information dissemination and manage- 
ment paradigms in society have gradually shifted from traditional top-down sin- 
gle forms to decentralized, flexible, and diverse paradigms. In recent years, the 
emergence of AI technologies led by LLMs has undoubtedly significantly 
enhanced the speed and breadth of information dissemination in human soci- 
ety while also empowering the administrative efficiency of social public man- 
agement departments. However, the rapid development of LLMs has also 
brought various risks to social management. First, LLM-based technology 
can easily generate a large amount of deceptive text, images, and even short 
videos, and such false information spreads rapidly through developed social 
media networks. In particular, the dissemination speed of false information dis- 
torting or misinterpreting policies often exceeds the response speed of social 
management departments, disrupting normal policy implementation and social 
order. 632 Second, social bots based on LLMs and recommendation systems 
exacerbate the phenomenon of the “information cocoon.” 633 They lock onto 
target audiences with precise information delivery through powerful decision- 
making capabilities, gradually solidifying human cognition within certain bound- 
aries through repeated interactions. This mechanism becomes a catalyst for 
inciting racism and political polarization among more extreme user groups on- 
line, leading to the expansion of online violence into offline protests, demonstra- 
tions, and even riots, causing social unrest. 634 

Regulatory gaps. Furthermore, for some ethically sensitive areas of social 
management, especially in healthcare, the LLMs also have many hidden risks. 
Although LLMs like Med-PaLM 635 currently outperform human doctors in eight 
out of nine clinical dimensions in terms of diagnostic accuracy, their deploy- 
ment still poses regulatory challenges. The US Food and Drug Administration 
is reluctant to certify LLMs as medical devices due to instances where LLM 

models have been found to inadvertently violate clinical decision support guide- 
lines. This underscores the urgent need for regulatory mechanisms and policy 
frameworks like the EU Artificial Intelligence Act, which mandates rigorous vali- 
dation and transparency for high-risk AI systems in healthcare settings. In addi- 
tion, the cultural biases embedded in LLM training data further exacerbate these 
risks. A comparative analysis reveals that GPT-4’s diagnostic performance on 
non-Western medical datasets lags behind its Western-centric counterparts, 
with error rates increasing by 19% in low-resource settings. 636 In conclusion, 
LLM-based technology poses certain risks and challenges to future social man- 
agement, and there is a need to pave the gaps of establishing regulatory mech- 
anisms and policy frameworks with respect to the requirement to align LLM 

models with mainstream values and prevent the potential issues proactively. 
Value-alignment concerns. Current AI value-alignment methods can be 

broadly categorized into three main types: RL from human feedback, supervised 
fine-tuning methods, and inference-time alignment. 637 These approaches still
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face numerous challenges regarding the interpretability of alignment and the 
variability of alignment objectives. Recently, the Value Compass project led 
by Microsoft Research Asia has approached this issue from an interdisciplinary 
perspective, drawing extensively from theories in ethics and sociology. 638 This 
initiative has introduced the BaseAlign algorithm, which is grounded in the the- 
ory of basic human values. BaseAlign constructs a fundamental values space 
based on the various dimensions of human basic values proposed by social 
psychologist Shalom H. Schwartz. 639 The target values for alignment can be 
represented as a vector within this value space. A discriminative model is 
then utilized to derive the value vector corresponding to the current behavior 
of the large model, with alignment achieved by minimizing the distance between 
these two vectors. To some extent, BaseAlign enhances the interpretability and 
transparency of value alignment in large models as well as their adaptability to 
the continuously evolving sociocultural context and changing social norms. 
However, despite the advancements in AI value alignment techniques, there re- 
mains a significant gap in achieving true alignment in large models. Challenges 
include the “alignment tax” problem, where value alignment may compromise 
the original capabilities of large models, and the scalability of supervision, espe- 
cially in scenarios where future AI capabilities and knowledge far exceed human 
abilities, necessitating effective oversight and control. 
Therefore, it is particularly important to implement industry-specific compli- 

ance frameworks in response to the regulatory mechanisms and policies, 
mandate bias audits for LLMs, and develop cross-cultural alignment and valida- 
tion benchmarks.

CONCLUSION 
In conclusion, this paper provides a comprehensive review of the technical 

developments in IDM, highlighting its evolution through the integration of 
models, optimization algorithms, and probabilistic inference tools. The focus 
has been on the paradigm of FM-based decision-making, exploring its 
potential to revolutionize IDM across various fields. While FMs offer unprece- 
dented opportunities for advancing IDM in diverse applications, they also pre- 
sent significant challenges such as security, data privacy, and deploy- 
ment costs. 
The future development of IDM will focus on the following aspects, the first of 

which is the interpretability and transparency of decisions. Although methods 
such as CoT can partially reveal the decision-making process of large models, 
challenges remain, such as instability in generation, uncontrollable granularity, 
and misalignment with human reasoning. Therefore, for IDM applications in 
high-risk industries like military, law, and healthcare, further research is needed 
to enhance its interpretability and address issues such as model hallucination. 
Second, interdisciplinary IDM requires further investigation. Current IDM ap- 
proaches are either based on general models or targeted at specific domains. 
However, to ensure the compliance and economic feasibility of decisions, it is 
often necessary to integrate knowledge from fields such as law and economics. 
Thus, one of the future research directions will be how to build interdisciplinary 
IDM. Lastly, the decision-making environment is typically dynamic. Existing 
model training and deployment methods make it difficult for models to contin- 
uously adapt to the evolving decision environment. Therefore, research into how 
models can self-evolve and dynamically update during the inference phase to 
cope with such changes is also a crucial area for future exploration. 
IDM, at its essence, is about automating decision-making processes. It holds 

profound significance for human society and scientific progress, as it paves the 
way for more informed, efficient, and intelligent solutions. Looking ahead, 
continuous efforts are needed to address the existing challenges and further 
explore its potential in emerging fields, thus promoting the overall development 
of IDM and its positive impact on the world.
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