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Abstract
The advent of universal time series forecasting models has revo-

lutionized zero-shot forecasting across diverse domains, yet the

critical role of data diversity in training these models remains un-

derexplored. Existing large-scale time series datasets often suffer

from inherent biases and imbalanced distributions, leading to sub-

optimal model performance and generalization. To address this

gap, we introduce BLAST, a novel pre-training corpus designed to

enhance data diversity through a balanced sampling strategy. First,

BLAST incorporates 321 billion observations from publicly available

datasets and employs a comprehensive suite of statistical metrics to

characterize time series patterns. Then, to facilitate pattern-oriented

sampling, the data is implicitly clustered using grid-based parti-

tioning. Furthermore, by integrating grid sampling and grid mixup

techniques, BLAST ensures a balanced and representative coverage

of diverse patterns. Experimental results demonstrate that models

pre-trained on BLAST achieve state-of-the-art performance with

a fraction of the computational resources and training tokens re-

quired by existing methods. Our findings highlight the pivotal role

of data diversity in improving both training efficiency and model

performance for the universal forecasting task.
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1 Introduction
Universal time series forecasting models have introduced new

possibilities for accurate zero-shot forecasting across various do-

mains [3, 9, 15, 24, 34, 37, 43]. One of the most critical foundations

for training these models lies in large-scale and diverse datasets.

Consequently, acquiring and organizing these training corpora has

emerged as a crucial challenge.

A large-scale time series dataset is typically composed ofmultiple

sub-datasets, where candidate samples are generated using a sliding

window on each sequence and subsequently sampled to obtain data

for model training. An example of a large-scale dataset consisting

of three sub-datasets is illustrated in Figure 1(a). It is worth noting

that the sequence length and the number of sequences may vary

significantly across sub-datasets. Recent pioneering studies [3, 12,

24, 37, 43] have leveraged multi-domain data to construct large-

scale time series datasets. For instance, the LOTSA [43] dataset

contains over 231 billion observations (considering all variates),

while the Time-300B [37] dataset is even larger, with 309 billion
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Different Sampling Approaches
Sliding 

Context Window

(c) Naive sampling.

(a) A large-scale raw dataset    , composed of three sub-datasets {    ,      , and     }. 

(b) Candidate sample set     . 
 

(d) Stratified sampling.
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Sequence 4
Sequence 5

Sequence 6
Sequence 7
Sequence 8

Figure 1: Illustration of the large-scale time series forecasting
pre-training dataset and various sampling methods.

observations. These studies primarily focus on the scale of data,
laying a solid foundation for training universal forecasting models.

Despite the growing scale, the diversity of pre-training data has

not yet been investigated. High-quality training data should capture

a wide array of patterns while ensuring balanced sample sizes for

each [1, 29, 35]. However, the initial distribution of large-scale time

series datasets is often highly imbalanced. As illustrated in Figure

2(a), only three datasets account for 88.2% of the total data volume,

and Figure 2(b) further highlights the imbalance in sequence lengths,

where longer sequences tend to contribute disproportionately more

samples. These skewed distributions will result in numerous repeti-

tive patterns [37, 41] in the raw data, compromising overall data

diversity. Thus, how to sample data with rich and balanced patterns

becomes a crucial challenge.

However, existing studies generally overlook these imbalance is-

sues, adopting simplistic sampling strategies such as naive sampling

or stratified sampling. The former uniformly selects samples from

all sub-datasets, as shown in Figure 1(c). The latter usually involves

two steps: first, uniformly or weightedly selecting a sub-dataset (or

sub-domain), and then selecting a sample within that sub-dataset,

as illustrated in Figure 1(d). While these sampling strategies are

intuitive and easy to implement, they fail to sufficiently correct for

the inherent biases in large-scale time series data. Specifically, while

naive sampling entirely overlooks these biases, stratified sampling

attempts to mitigate them, but often assumes that data within the

same dataset or domain share similar patterns, which is reasonable

but does not always hold. For instance, as shown in Figure 1(a), both

D1 and D3 originate from the traffic domain but exhibit distinct

patterns. Similarly, two time series within D2 display divergent

patterns. In summary, the inability to ensure diversity in the train-

ing data can have significant negative consequences. For example,

the model may overfit to frequent patterns while underfitting less

common ones, impairing its generalization capability.

To address the aforementioned issues, we propose a novel pre-

training corpus named BLAST (BaLAnced Sampling Time series cor-

pus). First, we integrate a wide range of publicly available datasets,

creating a large-scale dataset with a total of 321 billion observations.

Unlike prior approaches that depend on dataset or domain labels

to differentiate time series patterns, BLAST incorporates a diverse

array of statistical attributes to comprehensively characterize each

Others  
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(a) Proportional distribution of datasets.

Figure 2: The uneven distribution of the raw large-scale time
series dataset collected by BLAST.

time series’ patterns, such as stationarity, seasonality, volatility, etc.
Subsequently, BLAST amalgamates these heterogeneous features

into unified feature vectors through a discretization process and

projects them into a low-dimensional space, thereby intuitively re-

vealing the uneven distribution of the data. Then, BLAST employs

grid sampling and grid mixup within the low-dimensional space to

ensure a balanced and representative coverage of diverse patterns.

To validate the effectiveness of BLAST, we trained state-of-the-

art universal forecasting models using the proposed corpus from
scratch. Table 1 presents the results from the TimeMoE [37] model.

1

The original TimeMoE was trained on 419 billion tokens using 128
A100 GPUs. In contrast, the BLAST-based TimeMoE achieves state-

of-the-art performance with only 78 billion tokens and 8 A100 GPUs.
These results demonstrate that incorporating data diversity allows

BLAST-based model training to achieve substantial advantages in

both training efficiency and model performance.

In summary, the key contributions are as follows:

• This study fills a critical gap in the role of data diversity in

training universal forecasting models. It is the first to inves-

tigate the effect of pre-training data diversity on training

efficiency and model performance.

• We propose a balanced sampling technique that treats time

series patterns as the sampling target. Specifically, the time

series is characterized by multiple statistical properties, and

data is implicitly clustered using grid-based partitioning.

Grid sampling and grid mixup techniques are then applied

to generate diversified pre-training data.

• We develop BLAST, an efficient time series corpus gener-

ated through the balanced sampling. Experimental results

show that BLAST-based pre-training achieves superior per-

formance while reducing resource and data requirements.

2 Preliminaries
In this section, we define the notions of large-scale time series

forecasting datasets, sampling strategies, and universal forecasting

models. Frequently used notations are summarized in Table 2.

Definition 1. Large-scale Time Series Forecasting Dataset
D comprises 𝑁 sub-datasets, denoted as D1,D2, . . . ,D𝑁 . Each sub-
datasetD𝑛 contains 𝐾𝑛 time series {𝑋𝑛

1
, 𝑋𝑛

2
, . . . , 𝑋𝑛

𝐾𝑛
}. The 𝑘-th time

1
The choice of TimeMoE as the baseline for presenting the results is motivated by two

main reasons: (i) TimeMoE is the only model pre-trained on a comparably large-scale

raw dataset (309 billion observations); and (ii) TimeMoE is recognized as one of the

state-of-the-art universal forecasting models.
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Table 1: Comparison of training cost and performance be-
tween TimeMoE𝑏𝑎𝑠𝑒 -BLAST and the original TimeMoE𝑏𝑎𝑠𝑒 .
The average MSE/MAE is reported as shown in Table 5.

TimeMoE𝑏𝑎𝑠𝑒 -BLAST TimeMoE𝑏𝑎𝑠𝑒
Hardware 8×A100 128×A100
# Batch Size 192 1024

# Training Tokens 78.64B 419.43B

Avg. MSE / MAE 0.325 / 0.368 0.341 / 0.385

series 𝑋𝑛
𝑘
in the 𝑛-th sub-dataset consists of 𝑇𝑛𝑘 time steps, denoted

as 𝑋𝑛
𝑘
= {𝑥𝑛𝑘

1
, 𝑥𝑛𝑘

2
, . . . , 𝑥𝑛𝑘

𝑇𝑛𝑘
}. Note that the size of the sub-datasets

and the length of individual time series can vary significantly.

Definition 2. Sampling Strategies refer to the methods used to
select training data from candidate sample set W. Raw time series
cannot be directly used for model training. Candidate samplesW are
generated by applying a sliding window𝑊 to each time series. The
goal of the sampling strategy is to select the final set of samples used
for training from these candidates.

Definition 3. Universal Forecasting Models2 are pre-trained
on large-scale time series datasets and are capable of performing
accurate zero-shot forecasting across diverse domains.

3 Related Work
3.1 Universal Time Series Forecasting
Inspired by breakthroughs in artificial intelligence [18, 31, 36, 38],

universal time series forecasting aim to achieve zero-shot forecast-

ing across domains through pre-training on large-scale datasets.

These models are predominantly built on Transformer architec-

tures [40] and can be categorized into encoder-only models [12, 14,

17, 43], decoder-onlymodels [9, 23–25, 34, 37], and encoder-decoder

models [3, 15]. Encoder-only models typically employ masked en-

coding strategies along with architectures tailored for time series

tasks. Decoder-only models, on the other hand, often utilize au-

toregressive pre-training strategies. Recent advancements have

incorporated techniques such as mixture-of-experts [21, 37], long-

context modeling [23], and hierarchical modeling approaches [25]

to further improve their capabilities. Encoder-decoder [3, 15] archi-
tectures retain the full Transformer framework for time series tasks.

In parallel, cutting-edge research [8, 13, 42] have begun exploring

architectures beyond Transformers or other modalities [6, 19, 20],

aiming to design models specifically for time series data and further

enhance forecasting accuracy.

Overall, these universal models demonstrate surprising zero-

shot forecasting capabilities through pre-training on large-scale

datasets, underscoring their transformative potential in this field.

3.2 Time Series Forecasting Pre-training Corpus
Regardless of the model architectures, large-scale pre-training data

D serves as the foundation for achieving universal forecasting. The

2
While some studies refer to these models as foundational or general models, this paper

adopts the term universal forecasting models [2, 14, 42, 43] for the sake of consistency
and to avoid confusion with multi-task models.

Table 2: Frequently used notations.

Notations Definitions

D D = {D1,D2, . . . ,D𝑁 } is the raw large-scale pre-

training dataset, consisting of 𝑁 sub-datasets.

D𝑛
D𝑛 = {𝑋𝑛

1
, 𝑋𝑛

2
, . . . , 𝑋𝑛

𝐾𝑛
} is the 𝑛-th sub-dataset,

containing 𝐾𝑛 time series.

𝑋𝑛
𝑘

𝑋𝑛
𝑘
= {𝑥𝑛𝑘

1
, 𝑥𝑛𝑘

2
, . . . , 𝑥𝑛𝑘

𝑇𝑛𝑘
} is the 𝑘-th time series in

the 𝑛-th sub-dataset D𝑛 , containing 𝑇𝑛𝑘 time steps.

𝑥𝑛𝑘𝑡 𝑥𝑛𝑘𝑡 is the 𝑡-th time step in the time series 𝑋𝑛
𝑘
.

W W denotes the collection of context windows

drawn from D.

𝑊
𝑊 denotes the data under a context window of

length |𝑊 |.

𝑆
𝑆 denotes the stride of the sliding context window;

throughout this paper we set 𝑆 = 1 by default.

⌊·⌋ ⌊·⌋ denotes the floor operation.

size of the raw data is typically measured by the total number of

observations, expressed as

∑𝑁
𝑛=1

∑𝐾𝑛

𝑘=1
𝑇𝑛𝑘 .

Numerous pioneering works have established large-scale train-

ing corpora to support universal forecasting models. For instance,

ForecastPFN [12] innovatively explored the role of purely syn-

thetic data in pre-training. Chronos [3] combined data from sources

such as Monash [16] and M-competitions [27], as well as synthetic

data, to create a corpus with a total of 84 billion observations.

Similarly, MOIRAI [43] introduced the large-scale dataset, LOTSA,

which includes 231 billion observations (accounting for all vari-

ates). Timer [24] developed the UTSD dataset by collecting multi-

domain data, comprising 1 billion observations. Another example

is TimeMoE [37], which constructed the largest existing dataset,

Time-300B, by integrating various data sources, reaching a scale

of 309 billion observations. These contributions have laid a solid

foundation for the development of universal forecasting models.

While most of these studies have focused primarily on the scale
of data, systematic investigations into diversity remain unexplored.

To address this gap, we propose a diversified pre-training cor-

pus—BLAST. Built on 321 billion raw observations, BLAST lever-

ages a balanced sampling strategy to ensure diversity. We select

state-of-the-art models and retrain them on the BLAST corpus.

Experimental results demonstrate that pre-training on BLAST is

superior significantly in both training efficiency and model perfor-

mance, underscoring the importance of a diversified corpus.

4 Limitations of Existing Sampling Strategies
The purpose of a sampling strategy is to select training samples

from the candidate sample setW. This set is generated by applying

a sliding window with stride 𝑆 to each time series. Each sample,

denoted as𝑊𝑛,𝑘,𝑡 , corresponds the 𝑡-th sliding window position of

the 𝑘-th time series in the 𝑛-th sub-dataset. The sampling strategy

is defined by the probability distribution P(𝑊𝑛,𝑘,𝑡 ).

4.1 Naive Sampling
The most straightforward way is the naive sampling, which uni-

formly selects the candidate samples:

P(𝑊𝑛,𝑘,𝑡 ) = Uniform(W) = 1

|W| . (1)
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Figure 3: Pipeline for the balanced sampling: (i) constructing large-scale time series datasets, (ii) utilizing diverse metrics to
comprehensively characterize time series, (iii) generating unified feature vectors and performing dimension reduction to
visualize data imbalances, and (iv) implementing grid sampling and grid mixup to enhance the diversity of the training data.

W is the candidate sample set, and is formally defined as:

W =

𝑁⋃
𝑛=1

𝐾𝑛⋃
𝑘=1

{𝑊𝑛,𝑘,𝑡 | 𝑡 = 1, 1 + 𝑆, . . . , and 𝑡 + |𝑊 | − 1 ≤ 𝑇𝑛𝑘 },

|W| =
𝑁∑︁
𝑛=1

𝐾𝑛∑︁
𝑘=1

⌊
𝑇𝑛𝑘 − |𝑊 |

𝑆

⌋
+ 1.

(2)

These notations are defined in Section 2 and Table 2.

4.2 Stratified Sampling
Stratified sampling typically involves selecting a sub-dataset (uni-

formly or with weighted probabilities) and then applying naive

sampling within it. The stratified sampling (uniform) can be de-

fined as:

P(𝑊𝑛,𝑘,𝑡 ) = P(W𝑛) · P(𝑊𝑛,𝑘,𝑡 | W𝑛),

P(W𝑛) =
1

𝑁
, P(𝑊𝑛,𝑘,𝑡 | W𝑛) =

1

|W𝑛 |
,

(3)

where 𝑁 is the number of sub-datasets,W𝑛 is the candidate sample

set generate from sub-dataset D𝑛 , and can be defined as:

W𝑛 =

𝐾𝑛⋃
𝑘=1

{𝑊𝑛,𝑘,𝑡 | 𝑡 = 1, 1 + 𝑆, . . . , and 𝑡 + |𝑊 | − 1 ≤ 𝑇𝑛𝑘 },

|W𝑛 | =
𝐾𝑛∑︁
𝑘=1

⌊
𝑇𝑛𝑘 − |𝑊 |

𝑆

⌋
+ 1.

(4)

Table 3: Comparison of time series corpora.

Corpus Raw Size Open Source Sampling Strategy

UTSD [24] 1B ✓ Naive Sampling

MOMENT [17] 1.23B ✓ Naive Sampling

Chronos [3] 84B ✓ Stratified Sampling

TimeGPT [15] ∼100B × Unknown

LOTSA [43] 231B ✓ Stratified Sampling

TimesFM [9] ∼307B × Unknown

Time-300B [37] 309B ✓ Naive Sampling

BLAST 321B ✓ Balanced Sampling

4.3 The Limitations
An effective sampling strategy should generate samples with rich

pattern while maintaining balanced sample sizes across patterns,

i.e., diversity. However, naive sampling preserves the original data

structure and its inherent biases. Stratified sampling partially ad-

dresses this issue, but the assumption that domain or dataset labels

reliably differentiate time series patterns is flawed. Table 3 summa-

rizes the corpus and sampling strategies in existing studies, most

of which rely on naive sampling or stratified sampling, or their

improved variants. For instance, MOIRAI [43] proposes the LOTSA

dataset and employs a weighted stratified sampling approach with

thresholds. In summary, these simple strategies often lead to uneven

data distributions, negatively affecting the model’s convergence

and generalization ability.

5 Balanced Sampling Time Series Corpus
The core insight of BLAST lies in harnessing the diverse statisti-

cal characteristics of time series data to implicitly cluster the data

through grid-based partitioning. Then, by treating the grids (i.e.,
data patterns) as sampling units, BLAST employs grid sampling

and grid mixup to sample the data in a balanced and comprehen-

sive manner. As illustrated in Figure 3, BLAST involves several

key processes: raw data construction, metrics calculation, feature

construction, dimension reduction, and the sampling stage.

5.1 Raw Data Construction
We integrate extensive publicly available datasets, creating a large-

scale dataset with a total of 321 billion observations. We fill missing

values with zeros and filter out short time series (those with a length

of less than 512). Commonly used benchmarks [47] are excluded.

Furthermore, we apply z-score normalization to eliminate the in-

fluence of varying value ranges across datasets. See Appendix A.1

for more details.

5.2 Metrics Calculation
As a core component of BLAST, metrics calculation serves to char-

acterize a time series through a diverse set of metrics. For a given
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time series 𝑋 , BLAST utilizes seven statistical metrics, which char-

acterize a time series’ patterns from various aspects [33]. Due to

space limitations, additional details, including metrics selection

principles, implementation details, and discussions on alternative

methods, are provided in Appendix A.2.

Stationarity refers to whether the statistical properties of a time

series remain constant over time. To assess this, we utilize the

Augmented Dickey-Fuller (ADF) test, defined as:

𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 =

{
True, if ADF(𝑋 ) < 0.05,

False, otherwise.
(5)

The ADF test yields a boolean result, determining whether a given

time series exhibits weak stationarity. Strong stationarity is not

considered, as it is rarely encountered in real-world applications.

Trend describes the overall direction of change in a time series,

reflecting long-term variation and representing a low-frequency

component. To quantify the trend, we apply the Mann-Kendall test,

formulated as:

𝑇𝑟𝑒𝑛𝑑, 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑡 = MannKendall(𝑋 ) . (6)

The Trend can be classified as either increasing, decreasing, or no
trend, while Strength𝑡 is a floating-point value that quantifies the
magnitude or significance of the detected trend.

Seasonality represents recurrent fluctuations within a time se-

ries, characterized by high-frequency components. We apply the

Multiple Seasonal-Trend decomposition using Loess (M-STL) [4] to

decompose the time series into residual (𝑅), trend (𝑇 ), and multiple

seasonal components (𝑆𝑖 ):

[𝑆1, · · · , 𝑆𝑘 ],𝑇 , 𝑅 = M-STL(𝑋 ),

𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑠 = max(0, 1 − var(𝑅)
var(𝑅 +∑𝑘

1
𝑆𝑖 )

), (7)

where Strength𝑠 indicates the strength of seasonality. We use the

number of seasonal components, denoted as 𝑘 (with a maximum

value of 3), along with Strength𝑠 , as the metrics. Note that while

the STL decomposition can also be used to calculate trends, doing

so may result in redundancy between the trend and seasonality

components, reducing their diversity.

Volatility quantifies the degree of fluctuation in a time series and

is formally defined as:

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 =

√︃
1

𝑇

∑𝑇
𝑖=1 (𝑥𝑖 − 𝜇)2

𝜇
, (8)

where 𝜇 is the mean of the time series with length 𝑇 . Essentially,

volatility is a variation of the standard deviation, reflecting the

relative magnitude of variability.

Scedasticity indicateswhether the variance of a time series changes

over time, thereby capturing distribution drift. It can be assessed

using Lagrange Multiplier (LM) test on the residual component [5]:

𝑆𝑐𝑒𝑑𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 =

{
Homo, if LMTest(𝑅) > 0.05,

Hetero, otherwise.
(9)

Memorability quantifies the degree of long-term dependence in

a time series and is measured using the Hurst exponent:

𝑀𝑒𝑚𝑜𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝐻𝑢𝑟𝑠𝑡 (𝑋 ). (10)

Anomaly represents the proportion of values that deviate signifi-

cantly from the majority, reflecting the level of noise in the series.

Outliers are identified as values exceeding the 95% threshold in a

one-tailed test after z-score normalization:

𝐴𝑛𝑜𝑚𝑎𝑙𝑦 =
|{𝑥𝑖 ∈ 𝑋 | 𝑥𝑖−𝜇𝜎 > 1.645}|

𝑇
. (11)

5.3 Feature Construction
Overall, the metrics described above provide a comprehensive char-

acterization of a time series. Figure 4 illustrates the distribution of

the raw data across these metrics. As can be seen, these metrics are

inherently heterogeneous, comprising both discrete and floating-

point values with varying ranges. To mitigate this heterogeneity,

we introduce a discretization-based feature construction approach

that unifies the representation of all metrics into a single vector.

For continuous metrics, we discretize their values within a pre-

defined range using a quantization technique. Formally, inspired

by [3], given ametric 𝑧, the interval [𝑏0, 𝑏𝐵] is divided into 𝐵 equally

spaced bins, and 𝑧 is mapped to the corresponding bin index using

the quantization function 𝑔(𝑧), defined as follows:

𝑔(𝑧) =


0, if 𝑏0 ≤ 𝑧 < 𝑏1,

1, if 𝑏1 ≤ 𝑧 < 𝑏2,

.

.

.

𝐵 − 1, if 𝑏𝐵−1 ≤ 𝑧 < 𝑏𝐵 .

(12)

Values outside the interval [𝑏0, 𝑏𝐵] are assigned to the nearest bin

(either 0 or𝐵−1) to handle the long-tail distribution. The parameters

𝐵, 𝑏0, and 𝑏𝐵 for each continuous metric are listed in Table 4.

Finally, along with discrete metrics, we apply one-hot encoding

to all metrics. These vectors are then concatenated into a unified

representation ℎ, which has a fixed length of 61, i.e., a vector in

R61, providing a standardized and comprehensive description of

the time series patterns.

5.4 Dimension Reduction
To better understand the bias in the data distribution, we reduce the

dimension of the vector ℎ to a low-dimensional space. Specifically,

for a given time series 𝑋𝑛
𝑘
, its corresponding vector ℎ can be calcu-

lated. The BLAST raw dataset comprises approximately 40 million

raw time series. Subsequently, we employ the UMAP [28] model

𝑓umap to project all sparse vectors ℎ into a dense two-dimensional

space. Compared with other dimension reduction techniques such

as t-SNE [39] and PCA [26], UMAP offers the advantages of higher

efficiency and better preservation of data structure. The transfor-

mation is expressed as follows:

ℎ′ = 𝑓umap (ℎ) ∈ R2, (13)

Table 4: Discretization of continuous metrics.

Metric Strength𝑡 Strength𝑠 Volatility Memorability Anomaly

B 20 10 6 10 4

𝑏0 -1 0 0 0 0

𝑏𝐵 1 1 1.2 1 0.16
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Figure 4: Distribution of the raw dataset across key metrics.

where ℎ represents the original vector, and ℎ′ is the corresponding
vector after dimension reduction. We normalize all ℎ′ to [0, 1]. Due
to space constraints, the details of the UMAP model’s implementa-

tion and hyper-parameter study are provided in Appendix A.3.

As shown in Figure 3, the reduced data reveals a clear global

structural pattern, though its distribution remains highly imbal-

anced. This skewed distribution can introduce bias during model

training, as discussed in Section 1. Furthermore, the gaps between

different regions suggest that the patterns in the raw dataset are

still insufficient, despite the large scale of the data.

5.5 Sampling
To address the issue of uneven data distribution, we propose an

intuitive and effective sampling approach, which incorporates both

grid sampling and grid mixup.

First, we uniformly partition the two-dimensional space (𝑥,𝑦 ∈
[0, 1]) into𝑀 ×𝑀 grids, denoted as G, with each grid containing

multiple time series. Grid sampling is then applied, which involves

first selecting a grid, then randomly sampling a time series within

that grid, followed by naive sampling. The probability of selecting

a sample𝑊𝑛,𝑘,𝑡 is given by the following:

P(𝑊𝑛,𝑘,𝑡 ) = P(G𝑚)·P(W𝑛,𝑘 | G𝑚) · P(𝑊𝑛,𝑘,𝑡 | W𝑛,𝑘 ),

P(G𝑚) = 1

|G| ,

P(W𝑛,𝑘 | G𝑚) = 1

|G𝑚 | , P(𝑊𝑛,𝑘,𝑡 | W𝑛,𝑘 ) =
1

|W𝑛,𝑘 |
,∀𝑋𝑛

𝑘
∈ G𝑚,

(14)

where |G| is the number of valid grids , |G𝑚 | represents the number

of time series included in 𝑚-th grid, and W𝑛,𝑘 is the candidate

sample set generate from time series 𝑋𝑛
𝑘
. We set𝑀 = 100.

Next, to address the lack of sufficient coverage, i.e., the gaps be-
tween different regions of the data distribution, we introduce a grid

mixup technique that further enhances the model’s generalization

ability. Specifically, we randomly pick 𝑘 grids (from all available

grids), where 𝑘 is drawn from the discrete uniform distribution

U(1, 𝐾), and then randomly select samples from these grids. These

samples are subsequently mixed as follows:

𝑋GridMixup =

𝑘∑︁
𝑖=1

𝜆𝑖𝑋
𝑖 , (15)

where 𝑋 𝑖 is the sample from grid 𝑖 , and [𝜆1, · · · , 𝜆𝑘 ] are sampled

from a symmetric Dirichlet distribution 𝐷 (𝛼), where 𝛼 = 1.5. We

set 𝐾 = 3, i.e., the original data remains in the dataset with a 33.33%

probability. This approach is inspired by TSMixup [3], but instead

of treating each time series as the basic unit of sampling, we use

the grid as the fundamental sampling unit.

In summary, the sampling stage mitigates bias in over-dense or

under-dense regions, effectively addressing biases in large-scale

datasets. This strategy ensures that the samples are balanced and

representative, thereby enhancing both the efficiency and general-

ization performance of the model training process.

6 Experiments
This section addresses the following key research questions through

comprehensive experiments:

• RQ1: Does pre-training on BLAST provide any advantages?

• RQ2: What are the sources of these advantages, and what is the

impact of different sampling strategies?

• RQ3: How do grid sampling and grid mixup influence balanced

sampling (through ablation and hyperparameter analysis)?

6.1 Experimental Setup
6.1.1 Baselines. We select three popular universal forecasting

models—TimeMoE [37],MOIRAI [43], and Chronos [3]. For TimeMoE

andMOIRAI, we consider both their base and large versions, whereas

for Chronos
3
we include the small and base versions. This yields six

baselines in total. The dataset sizes and samplingmethods originally

used in their respective paper are detailed in Table 3.

6.1.2 Datasets. Following TimeMoE [37], we select six commonly

used benchmarks: ETTh1, ETTh2, ETTm1, ETTm2, Weather, and

GlobalTemp. None of these datasets is included in BLAST. Addi-

tionally, we adopt GIFT-Eval [2], the latest comprehensive bench-

mark containing 97 small prediction tasks. After filtering out any

data present in Time-300B (TimeMoE pre-training data), LOTSA

(MOIRAI pre-training data), and BLAST, we use the remaining 43

tasks based on the original GIFT-Eval settings.

6.1.3 Implementation Details. All experiments are conducted

using PyTorch on 8×A100 GPUs (40GB). The code for training uni-

versal forecasting models with BLAST is available at https://github.
com/GestaltCogTeam/BasicTS, and the BLAST corpus generation

code can be found at https://github.com/GestaltCogTeam/BLAST .
Additionally, all subsequent experimental results follow the zero-
shot forecasting setting. Further implementation details for the

benchmark datasets are provided in Appendix B.

6.2 Pre-training on BLAST (RQ1)
This section evaluates the advantages of training universal fore-

casting models using the BLAST corpus. To achieve this, we retrain

each of the selected baselines, as detailed in §6.1.1, from scratch
3
We employ the latest Chronos-Bolt release for its superior efficiency and accuracy.

https://github.com/GestaltCogTeam/BasicTS
https://github.com/GestaltCogTeam/BasicTS
https://github.com/GestaltCogTeam/BLAST
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Table 5: Performance comparison of BLAST retrained models with their pretrained counterparts. Lower MAE and MSE values
indicate superior performance. The symbols 𝑠, 𝑏, and 𝑙 represent the small, base, and large versions, respectively. † denotes the
models retrained from scratch using the BLAST corpus. Models with superior or equal performance are highlighted in red.

Models TimeMoE†
𝑙
TimeMoE𝑙 TimeMoE†

𝑏
TimeMoE𝑏 MOIRAI†

𝑙
MOIRAI𝑙 MOIRAI†

𝑏
MOIRAI𝑏 Chronos†

𝑏
Chronos𝑏 Chronos†𝑠 Chronos𝑠

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T
T
h
1

96 .348 .375 .350 .382 .352 .376 .357 .381 .359 .383 .381 .388 .362 .384 .376 .392 .357 .375 .384 .379 .359 .376 .394 .381

192 .381 .399 .388 .412 .389 .401 .384 .404 .395 .404 .434 .415 .400 .405 .412 .413 .397 .401 .441 .412 .403 .402 .455 .414

336 .409 .424 .411 .430 .408 .419 .411 .434 .411 .416 .495 .445 .416 .420 .433 .428 .422 .417 .475 .430 .431 .416 .499 .444

720 .447 .451 .427 .455 .450 .455 .449 .477 .420 .430 .611 .510 .430 .439 .447 .444 .460 .443 .472 .446 .449 .439 .520 .476

AVG .396 .412 .394 .419 .399 .412 .400 .424 .396 .408 .480 .439 .402 .412 .417 .419 .409 .409 .443 .416 .410 .408 .467 .428

E
T
T
h
2

96 .276 .329 .302 .354 .285 .332 .305 .359 .288 .325 .296 .330 .284 .324 .294 .325 .282 .321 .289 .330 .281 .326 .282 .328

192 .345 .376 .364 .385 .348 .378 .351 .386 .353 .370 .361 .371 .348 .369 .365 .375 .356 .369 .359 .369 .353 .371 .354 .373

336 .384 .416 .417 .425 .372 .405 .391 .418 .369 .382 .390 .390 .367 .386 .376 .390 .378 .397 .399 .400 .387 .403 .416 .410

720 .442 .470 .537 .496 .419 .452 .419 .454 .387 .406 .423 .418 .387 .410 .416 .433 .403 .424 .420 .425 .411 .430 .428 .431

AVG .361 .397 .405 .415 .356 .391 .366 .404 .349 .370 .367 .377 .346 .372 .362 .382 .355 .377 .366 .381 .358 .382 .370 .385

E
T
T
m
1

96 .327 .343 .309 .357 .334 .350 .338 .368 .355 .355 .380 .361 .348 .354 .363 .356 .310 .327 .331 .333 .314 .331 .328 .332

192 .368 .378 .346 .381 .388 .386 .353 .388 .388 .380 .412 .383 .385 .378 .388 .375 .363 .360 .386 .365 .364 .365 .365 .384

336 .373 .396 .373 .408 .400 .412 .381 .413 .399 .387 .436 .400 .410 .394 .416 .392 .410 .387 .408 .382 .391 .417 .391 .425

720 .445 .438 .475 .477 .457 .451 .504 .493 .429 .413 .462 .420 .448 .416 .460 .418 .477 .427 .503 .430 .452 .521 .445 .525

AVG .378 .388 .375 .405 .394 .399 .394 .415 .392 .383 .422 .391 .397 .385 .406 .385 .390 .375 .407 .377 .380 .408 .382 .416

E
T
T
m
2

96 .180 .259 .197 .286 .181 .260 .201 .291 .192 .259 .211 .274 .194 .265 .205 .273 .175 .249 .177 .244 .180 .248 .180 .251

192 .245 .305 .250 .322 .247 .307 .258 .334 .256 .302 .281 .318 .257 .304 .275 .316 .242 .290 .251 .293 .243 .292 .251 .298

336 .283 .338 .337 .375 .293 .344 .324 .373 .289 .329 .341 .355 .301 .342 .329 .350 .299 .326 .305 .327 .302 .331 .315 .338

720 .364 .392 .480 .461 .376 .396 .488 .464 .372 .384 .428 .428 .387 .396 .437 .411 .394 .387 .419 .394 .406 .396 .421 .403

AVG .268 .323 .316 .361 .274 .326 .317 .365 .277 .318 .315 .343 .284 .326 .311 .337 .277 .313 .288 .314 .282 .316 .291 .330

W
e
a
t
h
e
r

96 .161 .209 .159 .213 .163 .213 .160 .214 .168 .200 .278 .376 .171 .202 .220 .217 .163 .197 .177 .210 .164 .198 .172 .206

192 .217 .261 .215 .266 .215 .263 .210 .260 .246 .217 .301 .409 .218 .247 .271 .259 .210 .241 .224 .253 .213 .244 .218 .248

336 .276 .304 .291 .322 .273 .297 .309 .309 .288 .275 .329 .420 .278 .291 .286 .297 .264 .282 .260 .276 .273 .288 .266 .282
720 .342 .353 .415 .400 .328 .339 .418 .405 .351 .375 .370 .463 .370 .350 .373 .354 .339 .334 .345 .331 .349 .342 .358 .339
AVG .249 .281 .270 .300 .244 .278 .274 .297 .263 .266 .319 .417 .259 .272 .287 .281 .244 .263 .251 .267 .249 .268 .253 .268

G
l
o
b
a
l
T
e
m
p 96 .226 .346 .219 .341 .229 .349 .230 .350 .234 .351 .278 .376 .236 .352 .273 .377 .226 .343 .236 .352 .230 .345 .233 .348

192 .263 .386 .265 .381 .272 .390 .268 .385 .266 .382 .301 .409 .268 .384 .304 .409 .271 .384 .287 .398 .280 .389 .287 .397

336 .309 .420 .326 .426 .311 .423 .326 .427 .309 .420 .329 .420 .309 .420 .332 .437 .314 .419 .332 .433 .318 .420 .320 .430

720 .340 .447 .344 .453 .343 .449 .377 .467 .361 .459 .379 .467 .347 .449 .379 .469 .427 .502 .463 .524 .438 .504 .452 .521

AVG .284 .399 .288 .400 .288 .402 .300 .407 .292 .403 .321 .418 .290 .401 .322 .423 .322 .418 .329 .426 .316 .414 .323 .424

# Wins 22 28 9 2 23 28 9 2 30 30 0 0 30 28 0 3 28 26 2 5 28 28 4 3

Table 6: Performance comparison on the GIFT-Eval benchmark. Data previously included in Time-300B, LOTSA, and BLAST
have been excluded. Lower MASE values indicate better performance. Models with superior performance are highlighted in red.

Models TimeMoE†
𝑙
TimeMoE𝑙 TimeMoE†

𝑏
TimeMoE𝑏 MOIRAI†

𝑙
MOIRAI𝑙 MOIRAI†

𝑏
MOIRAI𝑏 Chronos†

𝑏
Chronos𝑏 Chronos†𝑠 Chronos𝑠

MASE 0.777 0.872 0.760 0.888 0.740 0.816 0.759 0.812 0.711 0.740 0.738 0.742

using the BLAST corpus. We then compare the performance of

the retrained models with their pre-trained counterparts on the

benchmarks outlined in §6.1.2.

Settings.We adhered to the original setup as outlined in their

respective papers [3, 37, 43]. Due to space limitations, readers in-

terested in more details can refer to the original papers. The only

deviation from the original setup was the batch size for TimeMoE.

The original TimeMoE model [37] was trained using 128×A100
GPUs with a batch size of 1024, processing 419.43 billion train-
ing tokens. Thanks to its massive model parameters and training

data, it achieved state-of-the-art performance. However, due to com-

putational resource constraints, the TimeMoE model pre-trained on

BLAST used a reduced batch size of 192, training on 78.64 billion
tokens. For the benchmarks used in TimeMoE [37], we follow a

similar setup. We assess the performance across four different pre-

diction lengths: [96, 192, 336, 720]. We report the normalized Mean

Squared Error (MSE) and Mean Absolute Error (MAE). For the GIFT-

Eval benchmark [2], we filtered out data already included in Time-

300B (TimeMoE pre-training data), LOTSA (MOIRAI pre-training

data), and BLAST, and strictly followed its evaluation pipeline. We

report the Mean Absolute Scaled Error (MASE).
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Table 7: Performance of different sampling strategies. Models with superior performance are highlighted in red.

Naive Sampling Stratified Sampling Balanced Sampling w/o GS w/o GM

Horizons 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

ETTh1 0.393 0.421 0.468 0.507 0.388 0.412 0.458 0.503 0.376 0.401 0.419 0.455 0.390 0.418 0.448 0.489 0.386 0.414 0.444 0.483

ETTh2 0.364 0.401 0.460 0.513 0.362 0.399 0.458 0.495 0.332 0.378 0.405 0.452 0.366 0.401 0.455 0.500 0.338 0.388 0.422 0.465

ETTm1 0.379 0.422 0.454 0.501 0.372 0.413 0.450 0.494 0.350 0.386 0.412 0.451 0.366 0.412 0.450 0.485 0.355 0.389 0.435 0.474

ETTm2 0.303 0.344 0.381 0.419 0.299 0.330 0.376 0.409 0.260 0.307 0.344 0.396 0.305 0.338 0.370 0.403 0.275 0.318 0.353 0.400

Results. Table 5 and Table 6 present the results of our experi-

ments. In general, models pre-trained on the BLAST corpus out-

perform the original models. The results for TimeMoE highlight

the significant efficiency advantages brought by pre-training on

BLAST, both in terms of computational resources and data usage.

Specifically, BLAST-based pre-training requires only 8 A100 GPUs,

compared to 128 A100 GPUs for the original TimeMoE, and pro-

cesses 78.64 billion training tokens, which is a fraction of the 419.43

billion tokens required for the original model. Furthermore, the

results for MOIRAI and Chronos demonstrate that, when computa-

tional resources and the number of training tokens are similar, the

performance advantages brought by BLAST become even more ap-

parent. In the next part, we delve deeper into the impact of sampling

strategies on both training efficiency and model performance.

6.3 Impact of Sampling Strategies (RQ2)
This section provides a comprehensive analysis of the impact of dif-

ferent sampling strategies on training efficiency and predictive
performance, shedding light on the key factors contributing to the

advantages of BLAST pre-training. To quantify the effects of each

sampling strategy precisely, we conduct controlled experiments

using the same raw data.
Settings.We use TimeMoE𝑏𝑎𝑠𝑒 as the baseline model, with ex-

perimental configurations consistent with §6.2. Based on the raw

BLAST data, TimeMoE𝑏𝑎𝑠𝑒 are trained using datasets derived from

three different sampling strategies: naive sampling (§4.1), stratified

sampling (§4.2), and balanced sampling (§5). First, to evaluate the

effects of these strategies on training efficiency, we analyze the

rate of validation loss reduction on a unified validation set, which

is constructed as the union of the validation sets from the three

sampling strategies and excludes data that appears in the training

sets. Second, to assess the impact of sampling strategies on model

performance, we report the MAE on four ETT datasets, enabling a

comprehensive comparison across different sampling methods.

Results. Figure 5 illustrates the convergence rates of models

trained with different sampling strategies, highlighting their effects

on training efficiency. The results indicate that models trained

with balanced sampling exhibit a significantly faster reduction in

loss. This efficiency advantage becomes particularly evident in

the later stages of training, where loss reduction slows. Notably,

under equivalent loss conditions, balanced sampling requires only

about 35% of the training steps compared to naive or stratified

sampling. Table 7 further demonstrates the effectiveness of different

sampling methods in terms of forecasting performance. Balanced

sampling consistently outperforms other methods. Additionally,

The Distribution of Raw Data
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Figure 5: Comparison of convergence speeds for different
sampling methods.

models trained with naive or stratified sampling underperform the

original TimeMoE. This is due to the lack of focus on data diversity

in these strategies, combined with the substantially smaller token

count in our training process compared to the original TimeMoE

implementation.

In summary, these results underscore the critical role of data di-

versity, and the balanced sampling strategy significantly enhances

data diversity during training. This intuitive yet effective sampling

approach proves instrumental in improving both model perfor-

mance and training efficiency.

6.4 How Do Grid Sampling and Grid Mixup
Affect Balanced Sampling? (RQ3)

This part presents a further ablation study and hyper-parameter

analysis of BLAST. Specifically, we examine the contributions of

two key components—grid sampling and grid mixup—in balanced

sampling. Additionally, we investigate how grid size affects model

performance and explore the underlying reasons for these effects.

Settings.We use TimeMoE𝑏𝑎𝑠𝑒 as the baseline model and con-

duct experiments on datasets excluding either grid sampling or

grid mixup. We report the MAE on four ETT datasets. Further-

more, we vary the grid size in the sampling stage, setting it to

[10, 50, 100, 500, 1000, 5000]. We evaluate the models on four ETT

datasets and report their averaged predictive performance.

Results. The performance of models without grid sampling and

grid mixup is shown in Table 7. Removing grid sampling results

in a setup similar to naive sampling, where grid mixup becomes a
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Figure 6: The impact of grid size in grid sampling.

standard TSMixup [3]. This yields slightly better performance than

naive sampling. Meanwhile, the absence of grid mixup significantly

diminishes performance compared to balanced sampling. This con-

firms that grid mixup is an effective strategy for enhancing data

diversity. These ablation results further validate the effectiveness

of balanced sampling.

Additionally, Figure 6 presents the predictive performance for

various grid sizes. It is evident that both excessively small and large

grids result in suboptimal performance. The reaseaons are:

• Too large a grid: Results in too few grids, each with many het-

erogeneous time series. In the extreme case, there’s just one grid,

and balanced sampling degrades to naive sequence sampling.

• Too small a grid: Results in too many grids. Despite large data,

the representation space remains sparse, and balanced sampling

degrades to naive sequence sampling again due to insufficient

sequences per grid.

In summary, grid size acts like implicit clustering—ineffective clus-

tering (either too large or too small grid size) causes balanced sam-

pling to fail.

6.5 Alternative Dimension Reduction Methods
We benchmark three popular dimensionality-reduction algorithms,

PCA [26], t-SNE [39], and UMAP. To obtain an intuitive sanity

check, we generated synthetic data with uniformly distributed fea-

ture vectors, following the feature construction process in BLAST.

If a method faithfully preserves the original geometry, its projection

should therefore exhibit:

• Clear global structure, as the unified vector is constructed from

multiple one-hot vectors.

• Even distribution of samples within each component, as each

one-how vector is randomly generated.

To compare these methods, we visualized the results for both real

and synthetic data.

Table 8 contrasts the three dimensionality-reduction methods.

Because PCA is a linear method, it fails to represent either local

or global structure in our discrete feature vectors. t-SNE preserves

neighbourhoods but distorts the overall geometry and, on large

datasets, is computationally heavy. UMAP, by comparison, captures

both global relationships and local patterns: it separates the main

regions cleanly and keeps the samples within each region evenly

distributed. Overall, UMAP provides the most faithful picture of

the data at both macro- and micro-scales.

Table 8: Comparison between PCA, t-SNE, and UMAP.
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6.6 Intuition Behind Balanced Sampling
Essentially, BLAST estimates the probability density function (PDF)

of the pre-training data and then draws unbiased samples via strat-

ified sampling guided by that PDF. Directly estimating a PDF for

raw time series data is impractical because each series is a high-

dimensional vector. BLAST therefore compresses every series into

a small set of statistical descriptors and projects these descriptors

into a two-dimensional feature space. It then partitions this plane

into uniform grid cells and samples within them. Each cell implic-

itly defines a cluster—capturing a characteristic pattern—so the

cells themselves, rather than pre-defined classes or domain labels,

become the strata for sampling.

Additionally, explicit clustering algorithms such as k-means or

DBSCAN could serve the same purpose, but they scale poorly and

often fail to preserve cluster quality on large datasets. Grid sampling

offers a more intuitive, computationally lightweight alternative that

strikes a practical balance between simplicity and effectiveness.

7 Conclusion
In this work, we present BLAST, a balanced sampling time series

corpus designed to address the critical yet understudied challenge of

data diversity in training universal forecasting models. By integrat-

ing 321 billion observations from diverse public datasets and intro-

ducing a novel balanced sampling strategy, BLAST systematically

mitigates inherent biases in large-scale time series distributions.

The proposed balanced sampling techniques ensure representative

pattern coverage, thereby enhancing both the training efficiency

and generalization capability of the model. Extensive experiments

demonstrate that models pre-trained on BLAST achieve superior

zero-shot forecasting accuracy, outperforming models trained on

naively or stratified-sampled corpora.
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Table 9: Hyperparameter study for n_neighbor.
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Table 10: Hyperparameter study for min_dist.
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A Details of BLAST
A.1 Raw Data Construction
Building upon previous work [3, 7, 17, 32, 43], we have collected

a large-scale time series dataset reaching 321 billion data points.

It is important to note that not all data were used for training.

Common benchmark datasets, such as ETT, Weather, and Traffic,

were excluded to ensure the integrity of our experimental settings.

Additionally, we filtered out time series with more than 5% missing

values (NaN). Moreover, we retained the remaining NaN values

within the filtered time series. These missing values are handled

dynamically during the training phase, according to the specific

requirements of the model.

A.2 Metrics Calculation
A.2.1 Selection Principles for Metrics. Metrics selection is es-

sential for effectively capturing the underlying patterns of a time

series. The seven metrics selected in this study are widely used in

statistical time series analysis, and each highlight different dynamic

aspects, providing a comprehensive and complementing represen-

tation of the series’ pattern. For example, trends and seasonality

capture distinct components: trends represent low-frequency, long-

term variations, while seasonality reflects high-frequency, peri-

odic fluctuations. Stability, volatility, hetero/homo-scedasticity, and

anomalies present distributional characteristics and variability from

different angles. Furthermore, the combination of memory and sea-

sonality could reveal the long-term dependency structure within

the data. Additionally, it is crucial that these metrics should not be
directly tied to predictability; otherwise, harmful samples may be

introduced during the grid sampling process.

A.2.2 Handling Variable-Length Series. Although these met-

rics do not have stringent requirements on time series length, ex-

cessively long samples may result in less robust representations.

Therefore, we standardize time series to a maximum context length

of 4096. Specifically, for time series longer than 4096, we randomly

sample three segments and compute the metrics for each. For con-

tinuous metrics, we take the average, while for discrete metrics, we

use a voting strategy to select the most frequent value.

A.2.3 Alternative Methods Considered. The core objective of
metrics calculation is to comprehensively capture the patterns of a

time series. Any method capable of achieving this goal can be ap-

plied at this stage. One potential alternative is using deep learning

models to generate time series representations. However, the raw
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Table 11: Performance comparison of TimeMoE pre-trained on BLAST against full-shot models. Red: the best, Blue: 2nd best.

Models Pre-training on BLAST Full-shot Models

TimeMoE𝑏𝑎𝑠𝑒 TimeMoE𝑙𝑎𝑟𝑔𝑒 iTransformer TimeMixer TimesNet PatchTST TiDE DLinear

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.399 0.412 0.396 0.412 0.454 0.447 0.448 0.442 0.454 0.450 0.468 0.454 0.540 0.507 0.455 0.451

ETTh2 0.356 0.391 0.361 0.397 0.383 0.406 0.364 0.395 0.414 0.496 0.386 0.406 0.611 0.549 0.558 0.515

ETTm1 0.394 0.399 0.378 0.388 0.407 0.409 0.381 0.395 0.400 0.405 0.387 0.400 0.419 0.419 0.403 0.406

ETTm2 0.274 0.326 0.268 0.323 0.288 0.332 0.275 0.323 0.291 0.332 0.280 0.326 0.358 0.403 0.350 0.400

Weather 0.244 0.278 0.249 0.281 0.257 0.278 0.240 0.271 0.258 0.286 0.258 0.280 0.270 0.320 0.265 0.316

Average 0.333 0.361 0.330 0.36 0.357 0.374 0.341 0.365 0.363 0.393 0.355 0.373 0.439 0.439 0.406 0.417

BLAST dataset is vast, containing 40 million time series, and there

is currently no widely recognized and robust model for time series

representation that can process such large-scale data efficiently.

Additionally, while using statistical metrics to characterize a time

series is significantly faster than deep learning models, it still re-

quires considerable time. In our experiments, this process took 8

days using 128 CPU threads (Intel Xeon 6338 2.0GHz). Therefore,

improving the efficiency of time series representation in the bal-

anced sampling process remains a critical topic for future research.

A.3 UMAP Hyperparameter Study
A.3.1 UMAPHyperparameterDescription. The choice of UMAP

parameters significantly impacts dimension reduction. In this study,

the primary goal is to preserve the global structure of the large-scale

dataset, particularly its overall distribution. Key UMAP parame-

ters include n_neighbors, min_dist, and metric, which influence

different aspects of the embedding process.

• n_neighbors: This parameter controls the balance between

local and global structures. Larger values better capture the

global distribution by considering more neighbors.

• min_dist: This determines the compactness of points in the

reduced space. A higher value prevents excessive clustering

of points, prioritizing the preservation of global topology.

• metric: This defines the distance function for measuring

point similarity. Given the discretization process in BLAST,

we use the Hamming distance, calculated as 𝑑𝐻 (𝑥,𝑦) =∑
𝑖 I(𝑥𝑖 ≠ 𝑦𝑖 ), where 𝑥 and 𝑦 are two feature vectors, and

I(·) is an indicator function that returns 1 if the condition is

true and 0 otherwise.

A.3.2 Hyperparameter Optimization. Similar to § 6.5, to op-
timize UMAP parameters, we generated synthetic data with uni-

formly distributed feature vectors, following the feature construc-

tion process in BLAST. Specifically, each one-hot feature was uni-

formly assigned across categories.

We assessed parameter effectiveness using two metrics: the pro-
portion of non-empty grids (p) and the standard deviation of
grid density (std) after dimension reduction. Larger p and smaller

std indicate better results. Using n_neighbors = 100 and min_dist
= 0.9 as the baseline, we tested values for n_neighbors in the range

[15, 20, 50, 100, 200, 500] and for min_dist in [0.1, 0.3, 0.5, 0.7, 0.9,
0.99]. The results, shown in Table 9 and Table 10, show that the

dimension reduction is optimal when n_neighbors = 100 and

min_dist = 0.9, with consistent trends observed for both real and

synthetic datasets.

A.4 Using the BLAST Corpus
To facilitate user access, we directly provide the processed data.

These datasets are represented as 𝑁 × 𝐿 matrices, where 𝑁 denotes

the number of samples, and 𝐿 is the length of each sample. The

length 𝐿 is set to 4096, and samples shorter than 4096 are right-

padded with NaN values to ensure uniform length. This approach

allows users to easily read and utilize the samples.

B Details of Experiments
B.1 Evaluation Metrics
In this study, we use the Mean Absolute Error (MAE) and Mean

Squared Error (MSE) as evaluation metrics. These metrics are com-

monly used to assess the performance of predictive models and can

be formulated as follows:

MAE =
1

𝑁

𝑁∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 | , MSE =
1

𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2 (16)

where 𝑦𝑖 is the true value, 𝑦𝑖 is the predicted value, and 𝑁 is the

total number of samples.

B.2 Details for Benchmark Datasets.
The ETTh1, ETTh2, ETTm1, ETTm2, and Weather datasets adhere

to the standard settings established in previous studies. For evalua-

tion, we utilize the test set for zero-shot prediction. The results we

obtained are consistent with those reported in TimeMoE [37]. For

the GlobalWeather dataset, since TimeMoE [37] does not follow

conventional settings and lacks detailed descriptions, we perform

the evaluation using the test set [45], applying z-score normaliza-

tion and setting the stride 𝑆 equal to the prediction length. For the

GIFT-Eval benchmark, we follow its original setting.

B.3 Additional Results
We compare TimeMoE pretrained on BLAST with full-shot mod-

els [10, 11, 22, 30, 44, 46] on the ETTh1, ETTh2, ETTm1, ETTm2, and

Weather datasets. Following the experimental settings in TimeMoE [37],

we report the average error in Table 11. It can be observed that

BLAST-pretrained TimeMoE outperforms these full-shot models.
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