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GRAPHICAL ABSTRACT
PUBLIC SUMMARY

- What does AI bring to geoscience? AI has been accelerating and deepening our understanding of Earth Systems in an

unprecedented way, including the atmosphere, lithosphere, hydrosphere, cryosphere, biosphere, anthroposphere and the
interactions between spheres.

- What are the noteworthy challenges of AI in geoscience? As we embrace the huge potential of AI in geoscience, several
challenges arise including reliability and interpretability, ethical issues, data security, and high demand and cost.

- What is the future of AI in geoscience? The synergy between traditional principles and modern AI-driven techniques holds
immense promise and will shape the trajectory of geoscience in upcoming years.
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mailto:lizhe.wang@gmail.com
https://doi.org/10.1016/j.xinn.2024.100691
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xinn.2024.100691&domain=pdf
http://www.thennovation.org
http://www.thennovation.org


REVIEW
Artificial intelligence for geoscience: Progress, challenges, and
perspectives
Tianjie Zhao,1,30 ShengWang,2,30 Chaojun Ouyang,3,27,30 Min Chen,4,30 Chenying Liu,5,30 Jin Zhang,6,30 Long Yu,2,30 Fei Wang,7,27,30 Yong Xie,8,30 Jun Li,2,30

Fang Wang,9,27,28 Sabine Grunwald,10 Bryan M. Wong,11 Fan Zhang,12 Zhen Qian,4 Yongjun Xu,7,27 Chengqing Yu,7,27 Wei Han,2 Tao Sun,7 Zezhi Shao,7,27

Tangwen Qian,7,27 Zhao Chen,7 Jiangyuan Zeng,1 Huai Zhang,13 Husi Letu,1 Bing Zhang,1 Li Wang,1 Lei Luo,14 Chong Shi,1 Hongjun Su,15

Hongsheng Zhang,16 Shuai Yin,1 Ni Huang,1 Wei Zhao,1 Nan Li,17,18 Chaolei Zheng,1 Yang Zhou,19 Changping Huang,1 Defeng Feng,27 Qingsong Xu,5

Yan Wu,20,27 Danfeng Hong,1,27 Zhenyu Wang,21 Yinyi Lin,16 Tangtang Zhang,22 Prashant Kumar,25,26 Antonio Plaza,23 Jocelyn Chanussot,24

Jiabao Zhang,9,27 Jiancheng Shi,29 and Lizhe Wang2,*
1Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
2School of Computer Science, China University of Geosciences, Wuhan 430078, China
3State Key Laboratory of Mountain Hazards and Engineering Resilience, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
4Key Laboratory of Virtual Geographic Environment (Ministry of Education of PRC), Nanjing Normal University, Nanjing 210023, China
5Data Science in Earth Observation, Technical University of Munich, 80333 Munich, Germany
6The National Key Laboratory of Water Disaster Prevention, Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China
7Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
8School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
9State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
10Soil, Water and Ecosystem Sciences Department, University of Florida, PO Box 110290, Gainesville, FL, USA
11Materials Science Engineering Program Cooperating Faculty Member in the Department of Chemistry and Department of Physics Astronomy, University of California, California,

Riverside, CA 92521, USA
12Institute of Remote Sensing and Geographical Information System, School of Earth and Space Sciences, Peking University, Beijing 100871, China
13Key Laboratory of Computational Geodynamics, University of Chinese Academy of Sciences, Beijing 100049, China
14International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
15College of Geography and Remote Sensing, Hohai University, Nanjing 211100, China
16Department of Geography, The University of Hong Kong, Hong Kong 999077, SAR, China
17Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing 210044, China
18School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
19Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of

Information Science and Technology, Nanjing 210044, China
20Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of

Sciences, Beijing 100044, China
21Department of Catchment Hydrology, Helmholtz Centre for Environmental Research – UFZ, Halle (Saale) 06108, Germany
22Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Chinese Academy of Sciences, Lanzhou 730000, China
23Hyperspectral Computing Laboratory, University of Extremadura, 10003 Caceres, Spain
24University Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000 Grenoble, France
25Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey,

Guildford GU2 7XH, UK
26Institute for Sustainability, University of Surrey, Guildford GU2 7XH, Surrey, UK
27University of Chinese Academy of Sciences, Beijing 100049, China
28Department of Chemistry, Technical University of Munich, 85748 Munich, Germany
29National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
30These authors contributed equally

*Correspondence: lizhe.wang@gmail.com

Received: January 15, 2024; Accepted: August 17, 2024; Published Online: August 22, 2024; https://doi.org/10.1016/j.xinn.2024.100691

ª 2024 The Author(s). Published by Elsevier Inc. on behalf of Youth Innovation Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Citation: Zhao T., Wang S., Ouyang C., et al., (2024). Artificial intelligence for geoscience: Progress, challenges, and perspectives. The Innovation 5(5), 100691.
This paper explores the evolution of geoscientific inquiry, tracing the pro-
gression from traditional physics-based models to modern data-driven ap-
proaches facilitated by significant advancements in artificial intelligence
(AI) and data collection techniques. Traditional models, which are grounded
in physical and numerical frameworks, provide robust explanations by
explicitly reconstructing underlying physical processes. However, their lim-
itations in comprehensively capturing Earth’s complexities and uncer-
tainties pose challenges in optimization and real-world applicability. In
contrast, contemporary data-driven models, particularly those utilizing ma-
chine learning (ML) and deep learning (DL), leverage extensive geoscience
data to glean insights without requiring exhaustive theoretical knowledge.
ML techniques have shown promise in addressing Earth science-related
questions. Nevertheless, challenges such as data scarcity, computational
demands, data privacy concerns, and the “black-box” nature of AI models
hinder their seamless integration into geoscience. The integration of phys-
ics-based and data-driven methodologies into hybrid models presents an
alternative paradigm. These models, which incorporate domain knowledge
to guide AI methodologies, demonstrate enhanced efficiency and perfor-
mance with reduced training data requirements. This review provides a
ll
comprehensive overview of geoscientific research paradigms, emphasizing
untapped opportunities at the intersection of advanced AI techniques and
geoscience. It examines major methodologies, showcases advances in
large-scale models, and discusses the challenges and prospects that will
shape the future landscape of AI in geoscience. The paper outlines a dy-
namic field ripe with possibilities, poised to unlock new understandings of
Earth’s complexities and further advance geoscience exploration.
INTRODUCTION
Geoscientists tackle themost significant environmental, scientific, and societal

challenges related to Earth.1,2 Despite extensive research, several questions
remain unanswered, such as the origin of Earth and life3,4 or the snowball/faint
sun paradox,5 among others.6–9 Unraveling these mysteries requires modeling
a complex geosystem,10 where Earth presents complicated spatial patterns
shaped by diverse interacting processes, including natural sub-systems (such
as the biosphere, atmosphere, and lithosphere) and various human activ-
ities.11–13 For instance, predicting geohazards necessitates considering not
only the inherent complexities of the geosystembut also the significant influence
The Innovation 5(5): 100691, September 9, 2024 1
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 of activities acrossmultiple spatial scales.14Moreover, the geosystem is an ever-

evolving network characterized by non-linear processes of high dynamical insta-
bility,15 where inherently stochastic features impose significant constraints on
temporal analyses.16 In this context, while current weather forecasting can
achieve relatively accurate predictions over several days, the challenge ofmaking
reliable predictions intensifies when extending the time frame to months or
longer.17 Throughout history, geoscience has undergone a transition from the
reliance on physics-based models to the utilization of data-driven machine
learning (ML) approaches when tackling these challenges. This shift has been
facilitated by remarkable advancements in artificial intelligence (AI),18 data collec-
tion techniques,19–21 and computing resources.22

Physics-based models
Geoscientific research fundamentally relies on conceptual models that

describe key processes and their interactions,23 which are subsequently tested
using physical and numericalmodels.24 Physicalmodels simulate environmental
conditions in a laboratory setting,25 allowing researchers tomanipulate variables
in a controlledmanner and investigate hypothetical scenarioswithin a large-scale
and complicated geosystem.24 While physical models are effective in certain
cases (e.g., using clay models to verify the orogenic theory26), they also
encounter discrepancies between the controlled virtual laboratory environment
and real-world situations.27 Numerical models condense natural processes
into mathematical representations.28 These equations, designed to mirror the
intricate characteristics of the real geosystem, are too complex to be solved
analytically29 and are generally tackled by numerical simulations, such as numer-
ical weather prediction models.30 Traditional physics-based models aim to un-
cover hidden mechanisms by reconstructing physical processes, and can pro-
vide robust explanations once successfully founded. However, the inherent
complexity of the geosystem, coupled with our limited understanding, poses
a significant challenge.31 Making comprehensive assumptions about related
factors and their dependencies thus becomes difficult.32,33 The sophistication
and uncertainty in optimizing such models greatly hinders their practical
application.34

Data-driven approaches
As the availability of geoscience data continues to expand, modern geoscien-

tific challenges are increasingly centered around managing extensive datasets,
often with limited or no underlying theoretical knowledge.17,35,36 In this context,
AI demonstrates significant potential.22,37,38 ML, as a major subfield of AI, is
deeply rooted in applied statistics and constructs computational models based
on inference and pattern recognition rather than physical rules.39,40 Typical ex-
amples include Gaussian-process-based “Kriging” interpolation,41–43 the utiliza-
tion of support vector machines for identifying geomorphological features,44

and so on.45–47 The success of these methods has sparked broad interest
among geoscientists in employing ML to address Earth science challenges, al-
lowing them to bypass the explicit modeling of physical processes.44,48,49 While
conventional ML methods can effectively handle small-scale problems, they
often encounter limitations in more complicated scenarios, particularly when
dealing with large volumes of data and broader scales.50 In this case, deep
learning (DL) has brought significant advances51–53 since AlexNet decisively
won the ImageNet challenge in 2012.54 Beyond applications of convolutional
neural networks and Vision Transformers (ViTs),55,56 densely/fully connected
networks have proven useful in tasks such as soil mapping,57 while recurrent
neural networks, including long short-termmemory (LSTM) networks, are partic-
ularly well suited for time series data and temporal problems.58 AI models hold
promise for advancing modern geoscientific research by learning hidden fea-
tures directly from data without requiring comprehensive physical prior knowl-
edge. DL, as the primary data mining tool in the big data era, propels the applica-
tion of AI to geoscience. However, AI techniques still face several challenges,
including the notorious data-hungry characteristics, the increased demand for
computational resources, and the inherent black-box nature of AI algorithms.59,60

Addressing these challenges is crucial to further explore the potential of AI in
geoscience.

Advanced AI techniques
Solely relying on either physics-based or data-driven models proves insuffi-

cient for knowledge discovery in geoscience.61 Hybrid models or physics-
2 The Innovation 5(5): 100691, September 9, 2024
guided/informed/aware ML offer a promising solution by integrating domain
knowledge to refine AI models in geoscience.62 These models incorporate con-
straints derived from domain-specific insights, such as encoding differential
equations from data63 or imposing physical constraints on data-driven
models.64,65 This integration allows for performance comparable with pure
data-driven approaches but with the advantage of requiring less training
data.66 Despite their potential to bridge interdisciplinary gaps between data-
driven and physics-basedmodels, the effective implementation of hybridmodels
remains an open question.11,67 In addition, the recent success of ChatGPT has
emphasized the potential of foundation models to enhance a wide range of
tasks.68 The vast expansion of data in geoscience provides a solid groundwork
for the emergence of large geoscientific models.69 These large models offer
new avenues for extracting new insights from data to enrich our understanding
of the Earth. Nevertheless, their development is still in the early stage.70,71 Geo-
data possesses unique characteristics, such as geo-references, various attribute
features, and temporal constraints, which make it challenging to directly apply
prominent language- and image-processing techniques from other fields to geo-
science. How to formulate foundation models tailored to geoscience, with impli-
cations for diverse downstream tasks, remains an underexplored area. Further-
more, humanity’s quest for knowledge has increasingly extended beyond Earth
into outer space.72,73 The 21st century has seen significant advancements in
space exploration.74–76 For example, NASA’s Artemis campaign aims to explore
the Moon for scientific research and technological advancement in 2024,77

alongside China’s Chang’e program.78,79 The BepiColombomission of European
Space Agency targets perplexing questions aboutMercury, aiming to unravel the
history of the entire Solar System.80 With our knowledge of other planets still
limited, advanced AI techniques play a crucial role in processing and analyzing
the vast amounts of data collected from these missions. By deepening our
comprehension of planetary processes, we cannot only enhance our understand-
ing of these celestial bodies but also enrich Earth-based research by drawing
insightful comparisons between fundamental geological mechanisms and plan-
etary evolution.81,82

Advanced AI techniques, particularly emerging paradigms such as physics-
informed ML and large models, showcase unprecedented potential for
advancing geoscience. These innovative approaches open new avenues for ad-
dressing complex challenges not only in Earth science but also in the explora-
tion of outer space. However, current research in these promising domains re-
mains relatively limited. This article aims to offer a comprehensive overview of
the latest advancements in AI applications within geoscience. In addition, it dis-
cusses the associated challenges and identifies untapped opportunities in this
field, providing guidance for future works. While several reviews have previously
explored the application of AI in geoscience, offering valuable insights into the
evolving landscape,59,61,70,83 the rapid evolution of AI, up-to-date reviews to cap-
ture current trends and illuminate future research directions. Geoscience, in
particular, requires special considerations for AI methodology design, given
the unique characteristics of geo-data. Therefore, rather than revisiting funda-
mental concepts and exemplified applications of commonly used ML
models,59,70,83 our work highlights the latest achievements and prospects of
AI, especially in handling big geoscience data. We will demonstrate how AI
can overcome the trade-off between efficiency and accuracy, as well as
make breakthroughs in other aspects, such as providing new plausible hypoth-
eses and research directions. Furthermore, we summarize new emerging geo-
scientific questions and paradigms in the context of modern AI and contempo-
rary space exploration to shed light on potential future avenues for geoscience
researchers.
The rest of the paper is organized as follows. The section “geoscientific

research paradigms” summarizes major geoscientific research paradigms,
with a special focus on AI-related ones in section “AI-driven geoscience para-
digms” and some typical application cases in section “typical cases”. The latest
progress of geoscientific large models is demonstrated in section “large models
in geoscience”. Then, we present some challenges and plausible future lines for
contemporary AI geoscientific method design in section “challenges and out-
looks in AI for geoscience”, followed by some findings in the “conclusion” section.
GEOSCIENTIFIC RESEARCH PARADIGMS
Diverse approaches and paradigms have been developed to deepen our

understanding of the dynamic Earth system.84 This section offers a
www.cell.com/the-innovation
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Figure 1. Illustration of four research paradigms in geoscience

REVIEW
comprehensive overview of the field, encompassing research paradigms
ranging from traditional observational studies to advanced computational
analyses. Four distinct yet interconnected methodologies have shaped contem-
porary geoscience: the observational-hypothesis-driven paradigm, the model-
driven paradigm, the data-driven paradigm, and the model-data-driven para-
digm,10,18 as illustrated in Figure 1. Each of these methodologies brings unique
strengths from foundational theories to advanced simulations and analyses,
contributing to our comprehension of the Earth’s complex system through
collaborative synergies.

Observational-hypothesis-driven paradigm
The observational-hypothesis-driven paradigm is foundational to Earth system

science, playing a crucial role in understanding the complex interactions within
our planet’s interconnected systems.19,85 This approach involves systematic
data collection and analysis to develop hypotheses about Earth’s processes, dy-
namics, and derived consequences. Rooted in empirical evidence and scientific
methods, this paradigm emphasizes objective observation and rigorous hypoth-
eses testing.86 A seminal example of this paradigm is James Lovelock’s Gaia hy-
pothesis,87 which suggests the Earth’s biosphere functions as a self-regulating
system, a concept that fundamentally requires extensive Earth system observa-
tions to be substantiated. Observations validate and refine hypotheses, providing
insights into processes that may not be directly observable. For instance, the
study of ocean circulation has greatly benefited fromobservations of sea surface
temperatures and currents, which have been crucial in understanding the dy-
namics of events such as El Niño.88 In addition, using empirical observations
and hypothesis testing in frameworks such as the Community Earth System
ll
Model has also been instrumental in assessing future climate scenarios and in-
forming policy formulation.89

The advancement of technology has revolutionized our ability to collect data
from various sources, including satellites, ground-based sensors, and remote
sensing instruments.90 Acquiring high-quality observational data has allowedsci-
entists to refine their hypotheses and models, leading to more accurate predic-
tions and a deeper understanding of Earth’s behavior. In climate science, the
Intergovernmental Panel on Climate Change Assessment Reports exemplify
this paradigm in action. Leveraging extensive observational data, these reports
critically evaluate the current state of climate system, hypothesize about future
climate trends, and predict potential global and societal impacts. This demon-
strates the profound impact of systematic observations on both scientific and
policy-oriented discourse.91

In summary, the observational-hypothesis-driven paradigm is a fundamental
method that combines empirical observations and hypothesis testing to unravel
the interactions within Earth’s interconnected systems. Firmly rooted in the sci-
entificmethod, this paradigm remains indispensable for deciphering the intricate
operations of the Earth system and guiding our responsible stewardship of the
planet.
Future work within this paradigm should focus on advancing the integration

and resolution of sensor networks across diverse ecosystems. By enhancing
data collectionmethodologies, researchers can improve the accuracy of environ-
mental models, leading to a more refined understanding of Earth system dy-
namics and their implications for global climate patterns. This approach will
enable more precise predictions and foster a deeper scientific understanding
of interconnected planetary systems.
The Innovation 5(5): 100691, September 9, 2024 3
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 Model-driven paradigm

There has been a long-standing focus on deciphering the interactions between
natural processes and human activities on the Earth’s surface.92 This focus has
driven the development of computational techniques andmathematical models,
particularly process-based ones,93 which simulate the physical, chemical, and
biological processes of the Earth.94 These models vary in complexity, ranging
from simple representations of single processes to intricate integrations of mul-
tiple systems. The crux of process-basedmodeling lies in its challenges to trans-
form our conceptual understanding of Earth processes into quantifiable and
replicable frameworks.95 By employing mathematical representations of natural
phenomena, these models provide insights into the mechanisms driving Earth’s
systems.96 Examples of such models include the Soil and Water Assessment
Tool97 and Storm Water Management Model98 for hydrological studies, and
the Finite Volume Community Ocean Model99 for oceanic processes. These
models have significantly enhanced our understanding and predictive capabil-
ities regarding natural phenomena. In atmospheric science, models such as
the Weather Research and Forecasting model,100 Community Multiscale Air
Qualitymodel,101 andModel of Emissions of Gases and Aerosols fromNature102

are particularly pivotal. The predictive power of process-based models is sub-
stantial, allowing scientists to explore “what-if” scenarios that inform decision-
making in environmental management and policy.103 However, the efficacy of
these models depends on their calibration and validation against empirical
data.104 This iterative process of refinement and validation ensures the
models’ accuracy and relevance, highlighting the continuous evolution of our un-
derstanding of Earth’s systems through scientific inquiry and computational
innovation.105,106

Future efforts in the model-driven paradigm should concentrate on refining
model scalability and resolution, particularly by incorporating adaptive algorithms
that improve the fidelity of simulations under varying climatic and environmental
conditions in current and future scenarios. This will expand our capacity to pre-
dict subtle changes within Earth’s systems with greater precision.
Data-driven paradigm
The data-driven approach has revolutionized our understanding of Earth sys-

tems and human-environment interactions.107 Fueled by the vast availability of
data and advancements in computing and sensing technologies, this paradigm
allows researchers to gain deeper insights into the complex interplay between
natural processes and human activities.108 In geoscience, this paradigm shift
is exemplified by utilizing satellite imagery and all kinds of big geo-data.109,110

For instance, the analysis of observational data has enabled researchers to
monitor changes in land cover, deforestation rates, and urban expansion,
providing crucial information for sustainable land-use planning and climate
change.111–113 Data-driven methods have also transformed our understanding
of urban environments.114,115 The analysis of transportation data, such as traces
fromglobal positioning systems and traffic flowdata, has enabled researchers to
model urban mobility patterns and reduce traffic congestion.116 In addition, so-
cial media data and geotagged content have provided insights into human
behavior, sentiment, and urban cultural dynamics, shedding light on the social as-
pects of urban life.117 The data-driven paradigm has also facilitated the study of
the human-environment nexus in urban areas. By integrating data on air quality,
land use, and human activity, researchers can better comprehend how urbaniza-
tion affects air pollution, public health, and carbon neutrality.118,119 This holistic
approach has been instrumental in shaping policies aimed at improving urban
air quality and reducing pollution-related health risks. Moreover, the integration
of socioeconomic and environmental data has enhanced our understanding of
urban resilience and vulnerability to natural disasters.120,121 For instance, by
analyzing demographic data andflood riskmaps, researchers can identify vulner-
able populations in flood-prone areas and devise targeted disaster preparedness
strategies.122

In summary, the data-driven approach has propelled our understanding of
Earth systems and urban dynamics to new heights. By harnessing vast datasets
and sophisticated computational techniques, researchers can now explore the
intricate connections between natural processes and human activities, facili-
tating more informed decision-making in areas such as land use, climate adap-
tation, transportation planning, and disaster resilience. This paradigm shift ad-
vances our scientific knowledge and offers practical solutions to the
challenges facing our planet and urbanized societies.
4 The Innovation 5(5): 100691, September 9, 2024
Future work in the data-driven paradigm should emphasize the development
of real-time data processing and analytics frameworks. By enabling instanta-
neous analysis and application of Earth system data, researchers can deliver
more timely responses to environmental changes and disasters, thereby
enhancing decision-making processes in critical situations.
Model-data-driven paradigm
The integration of process-based and data-driven models, commonly referred

to as hybrid models, leverages the strengths of both paradigms and advances
our comprehension of Earth system dynamics.17 Hybrid modeling enhances
simulation precision and computational efficiency.123 Process-based models,
underpinned by equations of 171 motion, are particularly effective in capturing
the processes of atmospheric and oceanic dynamics. However, they often strug-
gle with complex areas such as biological processes and carbon cycling, where
numericalmethods fall short and semi-empiricalmethods lack the necessary de-
tails and accuracy.124 Hybrid models address this gap by employing ML to
replace empirical sub-models, utilizing extensive observational data while main-
taining process-based models for well-understood mechanisms.125 In addition,
certain components of Earth system models are computationally expensive,
particularly when handling large datasets involving complex partial differential
equations126 or high-dimensional problems.127 Despite the fact that ML emula-
tors may incur high initial training costs, they offer a significant reduction in
computation timeonce operational, outperforming traditional local processmod-
ules.128 This increase in computational efficiency not only acceleratesmodel pro-
cessing but also enhances sensitivity and uncertainty analyses. The data-driven
aspects of these hybrid models afford the flexibility needed to adapt to evolving
conditions, as seen in climate and vegetation dynamic modeling.17 Moreover,
integrating physical principles into ML models enhances interpretability and ex-
tends their ability to extrapolate beyond observed datasets. For instance,
domain-specific knowledge and models can be used to create synthetic
data129 or to select representative training samples,130 which can train ML
models that are both generalized and cost-effective.Unique neural network archi-
tectures that incorporate physical constraints, knownas physics-informedneural
networks, provide solutions to partial differential equations used in climate dy-
namics modeling.131,132 In addition, embedding physical laws into the cost func-
tions of neural networks, traditionally optimized by statistical measures such as
cross-entropy or mean-square error, introduces a regularization effect and inher-
ently discards physically implausible outputs.133 The synergy between ML and
physical modeling not only fortifiesmodel credibility but also establishes ameth-
odological evolution.
Future initiatives within the model-data-driven paradigm should concentrate

on enhancing the scalability and integration of hybrid models across various
scales and systems. This would include fine-tuning the interoperability between
ML algorithms and process-based models to ensure seamless functionality in
both regional and global-scale simulations. Such advancements could drastically
improve the capability to simulate complex Earth system interactions and pro-
vide more accurate forecasts under changing climatic conditions.
This section has delved into the diverse paradigms andmethodologies of geo-

science, highlighting the multifaceted approaches to understanding our planet.
The observational-hypothesis-driven paradigm forms the basis for empirical
investigation, setting the stage for further inquiry, while the model-driven and
data-driven approaches offer advanced simulation and in-depth analysis tools.
In summary, the current landscape of research in geoscience has encountered
limitations in effectively addressing complex global challenges.59 There is a
need for a transformative shift toward insights that integrate advanced AI tech-
niques with geoscientific knowledge.123 As geoscience continues to evolve, the
interplay of thesemethodologieswill be instrumental in driving forwardour global
efforts for environmental protection and sustainable development.10
AI-DRIVEN GEOSCIENCE PARADIGMS
Earth science research has undergone a transition from the observational-hy-

pothesis-driven paradigm (see Figure 2) to a joint process-data-driven paradigm,
which exhibits the characteristics of the “four Vs” of big data: volume, variety, ve-
locity, and value.134 Since the early 2010s, the performance of AI has improved
dramatically70 due to the availability of large-scale datasets, massive computer
and storage hardware, and efficient distributed and parallel computing frame-
works. The rise of AI has greatly accelerated the paradigm transition in
www.cell.com/the-innovation
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Figure 2. AI-assisted observations, hypotheses, and predictions of geoscience
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geoscience research and driven various aspects of the application processes of
big Earth data, from big Earth data collection and processing135 to novel compu-
tational platforms,136 hypothesis generation,137 and geoscience prediction.138 In
this section, we discuss how AI can contribute to geoscience research in these
aspects and the unprecedented opportunities it presents.

AI-assisted Earth observation data collection, processing, and
representation

Data collection and analysis form the foundation of Earth science discoveries,
aiming to capture, process, and represent complex Earth data to mine valuable
information to understand complex Earth systems.17,84 AI enhances and accel-
erates each stage of this process. AI accelerates and improves the efficiency
of Earth observation data collection. The conventional satellite-to-ground data
collection process typically includes multiple stages, requiring high time con-
sumption and bandwidth.139 Edge computing with AI on satellites allows real-
time data processing and selective transmission to ground stations, significantly
improving efficiency and reducing the need for manual corrections. Similar
applications include real-time geographic information services for mobile termi-
nals,140 high-precisionmonitoring of ground stations,141,142 and UAV-based agri-
cultural remote sensing.143 For example, Wang et al.144 proposed a cloud-edge-
end collaborative system for agricultural remote sensing, allowing AI to perform
real-time data collection and processing on edge UAV devices. The processed
data are then sent to the cloud, enhancing data transmission rates. In the future,
integrated data collection and processing on edge sensors via AI145 will be of
great potential.

AI significantly contributes to data generation, completion, and enhance-
ment. Earth observation data frequently encounter limitations in temporal,
spatial, or spectral dimensions due to meteorological conditions, noise
interference, and sensor issues, resulting in discontinuities across these di-
mensions.109 Generative AI’s ability to process multi-modal data across
time, space, and multiple spectra is essential for generating, completing,
and enhancing geoscientific data.146 For instance, Kadow et al.147 devel-
oped an AI model using inpainting technology to reconstruct meteorolog-
ical data, restoring the missing spatial pattern of the El Niño event from
July 1877. Moreover, large diffusion models such as DiffusionSat148 and
CRS-Diff149 are capable of performing integrated tasks and addressing
the issue of limited remote sensing samples in specific spatiotemporal
scenarios. SpectralGPT150 captures spectral sequence patterns through
ll
multi-objective reconstruction, providing a foundation model with over
600 million parameters for various downstream tasks.
AI enhances the flexibility and effectiveness of data representations by intro-

ducing geometry and structure to model the complex interrelations within the
data.59,151 For example, graph networks152,153 model directly underlying struc-
tures, facilitating the discovery of broader spatial correlation patterns in Earth sci-
ence data. Self-supervised learning154 allows capturing general features without
relying on explicit labels. The Transformer architecture,155 known for its powerful
feature extraction and long-distance spatial dependency modeling capabilities,
unifies data representations across various scenarios andmodalities in Earth sci-
ence. Recently, large AI models have revolutionized representation learning by
facilitating deep interconnections between Earth science data to unearth new
scientific discoveries. Examples include the single-modal large language model
K2,156 the meteorological time series graph network model GraphCast,157 and
the largemulti-modalmodel SkySense,which integrates images, text, geographic
coordinates, and site observations.158 Exemplified by digital twin Earth, unified
and universal large Earth science models have become a future trend.150,159

Their embedding representations should not only consider the capabilities of
multi-scale spatiotemporal data processing, multimodal data representation,
and alignment with human understanding, but also provide a universal interface
for decoders tailored to various downstream tasks, achieving comprehensive
generalization across the domain.

AI promoting new computing tools or platforms for geoscience research
Numerous processes on and within the Earth are continuously monitored by

various sensorsglobally, generating vast amounts of Earth data, with storage vol-
umes exceeding 10 exabytes.19,160 These sensors capture various states, fluxes,
and intensities, capturing time/space-integrated data from satellite remote
sensing, in situ observations, and atmospheric monitoring devices.19 Tradition-
ally, geoscientific systems have required the integration of decentralized de-
coders tailored to specific tasks to compute and simulate the diverse and spatio-
temporally varied streams of observational data. This approach often
complicates data sharing and model connectivity. However, the emergence of
new AI tools and large models is poised to revolutionize the computation and
simulation paradigms of geoscience big data platforms.
First, large AI models are driving the innovative construction of big data plat-

forms that offer robust multi-task processing capabilities and efficient data inte-
gration mechanisms. For example, AI-Earth161 introduced AI-Seg, a universal
The Innovation 5(5): 100691, September 9, 2024 5
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 foundation model for object segmentation, capable of rapidly segmenting multi-

source remote sensing images and extracting spatiotemporal change informa-
tion. The Open Geospatial Engine162 incorporates LuojiaNet, a DL architecture
tailored to geoscientific features, linking 55 downstream foundation models
with 300million parameters. This systemalso includes an embedded spatiotem-
poral knowledge graph to associate multimodal spatiotemporal data.

Second, AI agents, in collaborationwith high-quality feedback fromgeoscience
experts, can assist in solving complex geoscientific processes or problems. The
“human-in-the-loop” process, which involves deep models and human experts,
has proven effective in geoscientific data annotationwith improved interpretation
accuracy.163 For instance, Li et al.164 have integrated large conversational
models into robots, allowing humans to issue commands to robots via language
for complex action-planning tasks. This advancement in AI’s understanding of
spatial intelligence is catalyzing robotic learning, approaching the goal of
embodied intelligence.165 Moreover, the deep integration of large AI models
with drones, autonomous vehicles, andmobilemonitoring devices on the surface
or underground, coupledwith satellite data, is facilitatingmore efficient and auto-
mated complex actions in geoscience, including spatiotemporal data collection,
processing, and transmission.

Finally, the integration and assimilation of Earth’s big data through the digital
twin Earth has ushered in a new era of experimentation and simulation in Earth
science.166 By integrating remote sensing data, in situ observations, experimental
analyses, societal perceptions, simulations, and reanalysis, AI-based digital twin
systemsor platformsare capable of accurately simulating various complexEarth
processes, spanning atmospheric, hydrological, urban, geological, and other do-
mains.167 Specifically, Earth digital twins, which integrate big Earth data and
physics-based models within interactive computational frameworks, enable
the monitoring and prediction of environmental changes and societal disrup-
tions,168 thereby driving a deeper understanding of Earth system processes
and scientific cognition.
AI facilitating the generation and optimization of geoscientific
hypotheses

Hypotheses are crucial research tools in Earth sciences, aiding scientists in
comprehending the Earth systemand its evolution through artificial observations
and scientific conjectures.169 For instance, Kepler170 formulated the laws govern-
ing planetarymotion based on extensive observations of stars and planets. Geo-
scientific hypotheses appear in various forms, including mathematical expres-
sions, molecular formulas in geochemistry, and genetic variation laws in
biology. Traditional methods for generating and validating hypotheses have pre-
dominantly relied on theoretical assumptions and logical deduction, as well as
computational modeling and simulation,18 with limited ability to solve complex
and nonlinear problems. In contrast, recent AI has learned patterns and rules
in massive data through “guessing-and-verifying,” with intelligence gradually
emerging.171 This evolution has led to significant breakthroughs in scientific en-
deavors, such as predicting protein structures,172 formally provingmathematical
conjectures and theorems,173 and simulating molecular dynamics in physics.174

This “guess-and-verify” type of AI has greatly contributed to the paradigm shift of
geoscientific hypotheses generation and validation.

AI is transforming the generation of geoscientific hypotheses from predefined
methods to data-driven discovery. Traditionally, hydrologists modeled rainfall-
runoff processes using physical conceptual models based on potential influ-
encing factors,175,176 which tend to be non-unique, subjective, and limited.177 In
contrast, AI treatsmultimodal data as inputs, enabling scientists to explore larger
sets of hypotheses for more effective generation.22,178 Furthermore, screening a
high-quality hypothesis from the candidates is usually framed as an optimization
problem.179 AI prioritizes directions with higher values bymaximizing reward sig-
nals for the candidate set, instead of using manually designed rules in the tradi-
tional approach.180,181 For example, a multi-objective optimization framework
was constructed to consider the impacts of hydropower capacity on five environ-
mental factors (sedimentation, river connectivity, flow regulation, biodiversity,
and greenhouse gases) in the Amazon basin.182 AI also enables selective
screening of candidate information with desirable attributes from high-
throughput experimental data, reducing the interference of redundant observa-
tions.183 Another example is the optimization of discrete geo-hypotheses, where
AI methods, such as variational autoencoders, map discrete symbolic represen-
tations into a differentiable latent space.184 Process-based differentiable
6 The Innovation 5(5): 100691, September 9, 2024
modeling63 combines physical mechanisms and ML techniques, facilitating hy-
pothesis testing and uncovering previously unrecognized correlations in Earth
science.
AI holds the potential to significantly contribute to the verification of geoscien-

tific hypotheses. Various hypotheses in geoscience, such asWegener’s continen-
tal drift theory, Darwin’s biological evolution hypothesis, and the historical climate
change conjecture, present major scientific challenges. Correspondingly, re-
searchers have leveraged AI’s ability to model nonlinear complex systems to
verify these hypotheses. For example, Stupp et al.185 used coevolutionary ML
to predict functionally relevant interactions between human genes, advancing
the understanding of humancoevolutionary processes. Kalra et al.186 utilized arti-
ficial neural networks to model the complex association between global temper-
ature and greenhouse gas concentrations. In addition, large AI models such as
GraphCast157 and PanGu187 have revolutionized traditional weather forecasting
methods and contributed to exploring the evolution of Earth’s climate over deep
time. AI also challenges the findings of traditional physical models.17 For
example, ML estimates of global carbon flux data have indicated that traditional
climate models may have overestimated the response of vegetation, such as
tropical rainforests and grasslands, to climate changes.188 Data-driven carbon
cycle estimates have also revealed potential mechanisms behind the enhanced
seasonal cycle of atmospheric carbon dioxide concentration in high-latitude
regions.189
AI-driven solutions to geoscience inference and prediction
Geoscience prediction tools have undergone substantial evolution, improving

our ability to comprehend complex Earth systems.190 Initially, Galileo, Kepler, and
others studied planets through experimental methods of observation and induc-
tion.191 Alfred LotharWegener studied the Earth’s plates through hypothesis and
deduction.192 Subsequently, the simulation and modeling of complex phenom-
ena, such asmeteorological, hydrological, oceanic, and other physical processes,
through physical computational models became the third paradigm of Earth sci-
ence research. With the arrival of the big Earth data era and the continuous
improvement of AI, scientists have made significant strides in spatiotemporal
analysis.151,193 The data-intensive research paradigm has become a main-
stream.11 Nowadays, large AImodels have revolutionized the paradigms for geo-
science inference and prediction,17 exhibiting strong abilities to mine hidden re-
lationships within vast data and enhanced model inference and prediction
accuracy.194,195

AI allows for more comprehensive and efficient geoscience inference and pre-
diction. To enhance geoscience inference, AI implements trustworthy attention-
basedmodels, enabling the extraction of spatial relationships across data from a
global perspective.196 Physical embedded neural networks leverage their power-
ful numerical approximation capabilities to reduce the computational complexity
of high-order differential equations.197 Spatiotemporal graph neural networks,
which utilize the graph structures to accurately represent spatial relationships
and factor correlations, enhance the reliability of reasoning.195,198 In terms of pre-
diction, AI incorporates a broad range of historical information and efficient
modeling strategies, such as pre-training199 and generative decoders,200 offering
enhanced technical support for decision-making processes. With the deep inte-
gration of AI infrastructures (such as high-performance computing chips, stor-
agemedia, rapid and lightweight largemodels) and edge sensors, real-timemoni-
toring of the Earth’s environment contributes to enhancing the predictive
capabilities for rapid disturbances such as geological disasters, climate anoma-
lies, and emergencies.91,154 Overall, AI facilitates more precise and reliable infer-
ence and prediction, reducing the computational complexity of high-order differ-
ential equations.201,202

Society has witnessed many successes in this respect, although many chal-
lenges still exist. Weather prediction, a successful example in geoscience, has
dramatically improved through integrating advanced AI models, increased
computational power, and established observational systems with large
amounts of data.122 Represented by PanGu187 and GraphCast,157 large AI
models can accurately predict weather evolution on time scales ranging from
several days to a month. However, challenges remain in seasonal weather fore-
casts, extreme event predictions (such as floods and wildfires), and long-term
climate forecasts.120,203 In the biosphere, Klemmer et al.204 trained a universal
AI geolocation encoder to assist in monitoring biological population migration
and number estimation. However, dominated by biologicallymediated processes
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Figure 3. Observation and simulation are the two main tools for understanding the Earth system AI helps in the observation of the Earth system, assisting in the discovery of
knowledge from data. Besides, AI also supports Earth system simulation, generating data from models and knowledge.
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such as reproduction and migration, and influenced by seemingly random but
intense disturbances such as earthquakes, landslides, and volcanic eruptions,
predicting the dynamic changes and deep-time evolution of the biosphere re-
mains difficult.205–207 It is also essential to establish a comprehensive, integrated
monitoring network in outer space, sky, surface land, and subsurface to provide
more reliable data support.

TYPICAL CASES
AI, as a modern scientific research infrastructure that comprises rapidly

evolving technologies, brings novel means to comprehend the Earth’s systems,
including the atmosphere, lithosphere, hydrosphere, cryosphere, biosphere, and
anthroposphere, as well as their interactions. By leveraging rapidly advancing
technologies, AI accelerates and deepens our understanding of the Earth at a va-
riety of spatial and temporal scales, advancing the achievement of sustainable
development goals (see Figure 3). The uniqueness of geoscience, showcasing
a considerable amount of subdisciplines, a vast quantity of geographic knowl-
edge, an extensive collection of observational data and spatial dependence,
spatial heterogeneity, and nonlinearities among geographical elements, has led
to novel advancements in AI technology.

Atmosphere
Clouds, aerosols, and gases are three of the most important components in

the atmosphere. They affect the solar radiation received by the Earth system
and exert distinct radiative forcing on the energy budget, which in turn has a
substantial influence on the weather and climate on a regional or global
ll
scale.18,208,209 AImodels the complex and nonlinear atmosphere system, predict-
ing common surface and atmospheric variables, as well as enhancing our ability
to retrieve atmospheric parameters with remarkable enhancement in the accu-
racy and granularity of atmospheric studies.210,211

Atmospheric component detection and interactions. AI has revolutionized
cloud identification, cloud type recognition, and even cloud dynamics prediction
from satellites,212 It has notably improved the accuracy of retrieving cloudmicro-
physical and cloud top parameters213–215 and has provided cloud bottom infor-
mation that traditional physical-based algorithms often fail to estimate.216 These
advancements enable the precise understanding of cloud formation in weather
forecasting,217 holding the promise of more accurate and efficient weather
predictions.
In aerosol remote sensing, AI mainly contributes to improving the detection of

aerosols,218 building models to retrieve aerosol optical properties219–221 and
applying the aerosol products to wildfire detection, particulate matter (PM2.5)
monitoring, and other aerosol-related problems.219 It is noteworthy that AI is
becoming an irreplaceable tool to develop high spatiotemporal datasets of the
aerosolsoriginating fromvarious emission sources that improve our understand-
ing of the climatic, environmental, and health effects from the intricate composi-
tion of aerosols.222–224

AI models, on the one hand, retrieve water vapor with high accuracy216 and
produce precipitation datasets with a high spatial and temporal resolution.225

On the other hand, AI techniques have been integrated with ground- and satel-
lite-based observations to quantify and forecast air quality on a regional or global
scale.216 Many factors (meteorology, geography, emissions, vegetation, etc.)
The Innovation 5(5): 100691, September 9, 2024 7
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 have been incorporated into the AI models to explore the complex non-linear re-

lationships between satellite-based observations and the surface concentrations
of various gaseous air pollutants, which provides insight into developing more
efficient strategies to reduce the adverse health and societal effects of air pollu-
tion exposure.226–229

By advancing cloud analysis, improving aerosol monitoring, and exploring the
relationships between complex gases, AI significantly enhances researchers’ un-
derstanding of the dynamics of atmospheric components and captures their
intricate interactions.

Solar radiation monitoring. The traditional radiative transfer (RT) model is a
classic and widely used way to retrieve solar radiation. However, the forward RT
simulation is a time-consuming process, which makes it inapplicable for direct
use with satellite observations, particularly with geostationary satellite observa-
tions (the monitoring frequency in the order of minutes). Through the develop-
ment of AI-based RT models in recent years, the computational efficiency of at-
mospheric RT has been greatly improved (by several orders of magnitude),230

which enables near real-time monitoring of solar radiation from satellites with
high accuracy.231

Weather forecasting and climate prediction. Mainstream AI-based global
weather/climate forecast models predominantly concentrate on short- and me-
dium-term predictions,151 such as Google DeepMind’s GraphCast,157 Huawei
Cloud’s Pangu-Weather,187 Tsinghua University and China Meteorological Ad-
ministration’s NowcastNet,232 Alibaba’s SwinVRNN,233 Fudan University’s
Fuxi,234 Shanghai’s AI Laboratory’s Fengwu,235 Microsoft and the University of
Washington’s Deep LearningWeather Prediction,236 with exceptional capabilities
in processing large datasets, performing real-time analysis, and predicting
extremeweather events.237 AI-based global weather/climate forecastingmodels
have high forecast timeliness and computational efficiency. Taking Pangu-
Weather as an example, it predicts 7 days’ weather in only 10 s, 0.6 days earlier
than the world’s leading weather forecasting system, the European Center for
Medium-Range Weather Forecasts (ECMWF).187 It is of great significance for
extreme weather forecasting. Based on the weather forecast assessment of
China’s National Ground Meteorological Stations in the first quarter of 2024,
AI-basedmodels such as Fuxi, GraphCast, and FourCastNet had higher accuracy
in temperature and wind speed than traditional numerical predictions.

Atmospheric predictability revolution: From challenges to solutions. The
atmosphere is an intricate and dynamic system, and myriad challenges
originate from the subtle interaction among aerosols, clouds, gases, and
radiations.210 Predicting weather patterns and understanding climate
change accurately are paramount in atmospheric science. However,
achieving these goals poses significant challenges, including the need
for faster and more precise weather forecasting and climate projections.
Nowadays, AI models have emerged as a powerful tool for tackling these
challenges and advancing solutions across a wide array of applications in
atmospheric sciences.237 It significantly promotes the development of
related monitoring and prediction platforms, which produce massive
data and information with high spatiotemporal resolution and improved ac-
curacy.10,234 In the future, as AI continues to evolve and incorporate more
spatial big data into its training, it will enhance the reliability and accuracy
of weather and climate forecasts further. Consequently, it may even lead to
the eventual replacement of traditional physics-based models with AI-
driven approaches. In addition, AI will play an imperative role in construct-
ing automated monitoring and warning systems for the atmosphere envi-
ronment, enabling timely issuance of alerts and recommendations. In
essence, AI’s application in atmospheric science transcends traditional
methods, providing innovative solutions to long-standing challenges. Its
integration into timely and accurate monitoring and prediction systems
not only advances our understanding of atmospheric processes but also
empowers us to make well-informed decisions.
Lithosphere
Solid Earth science, aimed at comprehending the structure, materials, and dy-

namics of the Earth’s interior, geological processes, and the evolutionary history
of the Earth,238 receives unprecedented opportunities from AI,10 with dramatic
developments in geological hazard monitoring and prediction, rock feature anal-
ysis, geological exploration, geological model construction, and analysis of soil
characteristics.10,239
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Geological exploration and hazard prediction. AI approaches have made
significant strides in their application to geological exploration, such as petroleum
and natural gas exploration,240 geophysical imaging,241 aswell as the processing
of seismic,242 magnetotelluric,243 and gravity data,244 enabling sophisticated
analysis and interpretation. Techniques such as denoising, phase-picking, and
weak signal enhancement can reduce human errors in the exploration process,
enhance the quality of exploration data, and accelerate exploration time.245 By
harnessing the power of AI, geoscientists can unlock new frontiers in exploration
efficiency, accuracy, and cost-effectiveness, ultimately shaping the future of
resource exploration and sustainability.
AI technology providespowerful tools in facilitating earthquakemonitoring and

prediction, including detection and phase identification,246 early warning,247 mo-
tion prediction,248 as well as forecasting magnitudes, scales, and timing,249 also
in assessment of landslide susceptibility,250 supporting themitigation of risks. AI
has also demonstrated great potential in the volcanic prediction process.251

Although AI encountered grand challenges in operational earthquake prediction,
forecasting of fault zone stress, and the occurrence of chained natural hazards
attributed to their highly coupled and strongly non-linear dynamics,252 it has ex-
hibited tremendous progress in recent years.253

Rock physics analysis. AI methods can be utilized for the analysis and clas-
sification of rock samples,254 automatically identifying rock types, compositions,
and physical characteristics, thus expediting the analysis of rock samples and
providing more detailed information about rock features, so as to aid geologists
in better understanding geological history and rock evolution.255 Recent evidence
demonstrates that AI has successfully solved various problems in rock me-
chanics, outperforming conventional empirical or statistical methods.254 By us-
ing AI approaches, deeper insights can be gained for more accurate geological
interpretations and predictive models.
Geological modeling. As the emerging paradigm of science and technology

research, AI is modulating the world in a variety of science realms, including ge-
ology. AI is transforming the measures geologists analyze data and understand
the mechanisms of deep Earth. During the construction of geological models, AI
is capable of integrating vast amounts of geological data fromvarious disciplines
and fields, ranging from geophysics and geochemistry to hydrology and tec-
tonics. This multidisciplinary approach generates predictive models that assist
scientists in better comprehending subsurface structures, stratigraphic forms,
and groundwater flow. AI-driven predictive modeling helps geologists to effi-
ciently and accurately identify patterns and trends that were difficult to detect
early on.256–258 AI’s integration into deep Earth modeling enables geologists to
identify previously unrecognized geological features and phenomena, thereby
advancing our understanding of the deep Earth.
Soil characteristics monitoring. AI boosts new developments in soil moni-

toring, offering a holistic and data-driven approach to soil monitoring and man-
agement.259 AI-driven sensors and monitoring systems enable continuous and
high-resolution monitoring of soil conditions, providing valuable insights into
soil health and dynamics, including essential soil parameters such as mois-
ture,259 temperature,260 and texture.261 By analyzing multispectral and hyper-
spectral imagery, AI models can accurately map soil types, nutrient levels, and
organic matter content across large spatial scales. This new real-time ability as-
sists farmers in making informed decisions, thereby improving farmland utiliza-
tion efficiency and agricultural production quality.262

Deep-time and deep-Earth discoveries: Scale and accuracy. To date, large
AI models constitute the most cutting-edge and wisdom-intensive research
regime; the integration of AI has indeed ushered in a new era of exploration
and understanding. However, as we delve deeper into the complexities of lith-
ospheric processes, it becomes apparent that simply scaling up large AI
models without due consideration for their ability to accurately capture and
resolve scientific intricacies may lead to deviations from fundamental physical
laws and characteristics. While large AI models boast impressive computa-
tional power, their efficacy in accurately describing lithospheric phenomena
may be limited by the uncertainties inherent to input labels and data. There-
fore, a shift toward the development of numerous and accurate small-scale
domain-oriented models tailored to specific scientific problems or application
fields is warranted. In addition, the integration of high-quality observation,
monitoring, and experimental data with completeness is crucial for training
and validating AI models in lithospheric studies.263 Synthetic data derived
from massive-scale numerical simulations can further enhance the robust-
ness and generalizability of AI models. Essentially, it may be a reliable and
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feasible measure to promote the revolutionary engagement of AI in deep-time
and deep-Earth discoveries.

Hydrosphere
The hydrosphere is the sum of all water, including atmospheric, land surface,

oceanic, and undergroundwater reserved on Earth.264 AI addresses awide range
of applications in the hydrosphere that allow (but are not limited to) better
modeling and estimation of precipitation, soil moisture, evapotranspiration,
streamflow, water storage, ocean currents, and ocean salinity, by simulating
the complex input-output relationships inherent to nonlinear hydrological pro-
cesses, thus improving the accuracy of hydrological model simulations and
remote sensing retrievals.265–267

Land surface water balance. AI benefits the closing of the land surfacewater
balance by accounting for the individual surface water flux components (precip-
itation, evapotranspiration, streamflow) and expanding the mapping capabilities
of key state variables (such as soil moisture). AI can improve the estimation and
forecasting accuracy of precipitation and help better understand the causes of
extreme rainfall.268 For example, generative adversarial networks have been
used for precipitation nowcasting and proved to be of high reliability.269 The
multi-layer perceptron model, integrating geostationary satellite infrared data
and passive microwave-based retrievals, yields precise precipitation esti-
mates.270 Probabilistic weather models such as deep neural networks (i.e.,
MetNet-2) forecast precipitation with exceptional resolution, up to 12 h ahead.271

Moreover, AI empowers the generation of precipitation data with unparalleled
precision, spatiotemporal resolution, and spatial coverage, enhancing our under-
standing of precipitation dynamics.272 In addition, AI methods analyze large-
scale circulation patterns associated with US Midwest extreme precipitation to
better understand the physical causes of changing extremes.273 Despite the
many successful cases of AI application, acquisition of high-quality and contin-
uous atmospheric data is still challenging due to sensor limitations, and the im-
plementation of hybrid models appears as an effective solution.

AI-based approaches havebeenextensively employed to estimate evapotrans-
piration, one of themost important components of the hydrological cycle. That is
crucial for estimating irrigation water requirements, hydrological processes, and
assessing agricultural systems at both regional274 and global scales.275 Site-
scale evapotranspiration observations can be upscaled to the regional scale us-
ing AI-based methods,276 thus overcoming the limited spatial and temporal
coverage of in situ observations. The ability of AI to forecast evapotranspiration
is also highlighted in a recent study.277 These forecasts play a crucial role in agri-
cultural planning and droughtmonitoring, contributing to improved resilience and
sustainability in watermanagement practices. A novel research direction is to es-
timate evapotranspiration at high resolution through the construction of hybrid
models,278 which combine the physical consistency and interpretability of phys-
ical models with the data-driven formulations of AI-based models, thereby
revealing processes that are insufficiently understood. This interdisciplinary
approach holds the potential to uncover the underlying mechanisms and diver-
sity of evapotranspiration, thereby enabling more robust and insightful assess-
ments of water cycle dynamics.

Streamflow, as a key aspect of sustainable water resource planning andman-
agement, can be estimated in real time279 or forecasted at lead times of 1–
7 days280 AI-based approaches, successfully used in streamflow regionaliza-
tion,281,282 can help to reduce modeling errors in process-based hydrologic
models to improve the accuracy of simulations, since process-based and AI ap-
proaches can complement each other with respect to their inherent strengths
and limitations.283 Deep neural networks enable the accurate identification of
spatial distribution and morphological features of water bodies,284 understand-
ing river evolution, and forecasting river dynamics,285 performing water quality
analyses on the catchment scale.286 Another significant contribution of AI is
the creation of global water quality databases due to its powerful learning and
data fusion capabilities, such as the Global Streamflow Indices and Metadata
Archive,287 global river discharge reanalysis,288 Global River Chemistry Data-
base,289 and Global River Water Quality Archive.290 The integration of AI into
streamflow estimation, forecasting, andwater quality analysis offers transforma-
tive opportunities for strengthening our understanding of hydrological processes
toward more sustainable and resilient water systems.

Soil moisture acts as a fundamental boundary condition in terrestrial hydrolo-
gy.178,291 The integration of AI-based models into soil moisture mapping signifi-
ll
cantly advances our ability to accurately retrieve, downscale, and predict soil
moisture dynamics across different spatial and temporal scales. By using AI-
based models, soil moisture retrievals are obtained from the passive-only292

and synergistic active-passive microwave observations293,294 with improved ac-
curacy and temporal resolution, which is challenging for traditional algorithms to
separate and interpret the desired information accurately. AI techniques down-
scale soil moisture from coarse spatial resolution to fine resolution,295–299 also
establish long-term global daily surface soil moisture datasets from multi-fre-
quency radiometers (AMSR-E/2 andFY-3 series) by transferring theSoilMoisture
Active Passive L-band observations, offering extended records vital for climate
monitoring and hydrological research.300,301 Moreover, with the help of AI algo-
rithms, soil moisture can be predicted at deeper depth (e.g., root zone) from sur-
face data302,303 and in a seamless and efficient manner through AI-based data
assimilation techniques.304,305

AI provides a potential solution for avoiding closure errors by enhancing the
estimation and prediction of individual water fluxes and state variables. It ad-
dresses challenges related to integrating diverse data sources to produce cohe-
sive models, achieving fine-scale spatial and temporal resolution, and under-
standing the nonlinear nature of hydrological processes.
Terrestrial water storage. AI plays an important role in improving the

spatial and temporal continuity and resolution of terrestrial water storage.
AI approaches have been instrumental in reconstructing continuous total
water storage, by filling the data gap between the Gravity Recovery and
the Climate Experiment (GRACE) satellite mission and its successor,
GRACE-FO.306 Similarly, AI-based models, such as the GTWS-MLrec, have
been developed to reconstruct terrestrial water storage estimates spanning
several decades from 1949 to 2022, using a set of ML models with a large
number of predictors.307 AI was used to capture complex spatiotemporal
patterns in water storage dynamics, facilitating comprehensive analyses
of hydrological trends and variability over extended periods. In addition, AI-
based approaches have been deployed to map soil water storage in Ghana
at high spatial and temporal resolutions, facilitating the identification of
areas with stable water availability for improved crop production and guiding
drought adaptation strategies.308 Moreover, GRACE-derived terrestrial water
storage anomalies are downscaled to 10 km spatial resolution by using a
convolutional long short-term memory neural network309 in Iran and convo-
lutional neural network-based approaches in Canada.310 In essence, AI pro-
vides a new capability to overcome data gaps, improve spatial resolution,
and enhance the continuity of water storage observations, ultimately
contributing to more effective water resource management.
Ocean currents and salinity. Ocean currents and salinity are crucial for un-

derstanding global climate systems, marine ecosystems, and coastal environ-
ments. Ocean currents reflect the movement of ocean water and drive the distri-
bution of heat, nutrients, and salinity, influencing weather patterns, climate
regulation, andmarine biodiversity. AI methods significantly improve the estima-
tion and forecasting of ocean currents by enhancing computational efficiency
and accuracy.311 Traditionalmethods often struggle with the complexity and vol-
ume of oceanographic data. AI models, such as those integrating sea surface
height, temperature, and wind stress simulated from the ocean general circula-
tion model, can accurately predict the ocean currents over most of the global
ocean,312 and successfully forecast the velocity. For structures of the loop cur-
rent system,313 AI techniques such as LSTM recurrent neural networks and
the Transformer also enable real-time in situ prediction of ocean currents at
any location, and overcome the problem of excessive computational complexity
in traditional regional physics-based prediction models.314

AI-based approaches, such as deep neural networks, generative adversarial
networks, random forests, support vector regression, andmulti-layer perceptrons
promote the convenient and fast estimation of ocean salinity, from the
Aquarius,315 SMAP,316 and the Geostationary Ocean Color Imager-II satel-
lites.317,318With the aid of AI-basedmethods, the ocean general circulationmodel
(e.g., Hybrid Coordinate Ocean Model) is also able to achieve more reliable esti-
mates of sea surface salinity.319 AI has demonstrated strong capabilities to
reconstruct the high-precision and high-resolution three-dimensional (3D) ocean
subsurface salinity on a daily scale in 12 depth levels (from 2 to 200 m) only
relying on the ocean 3D temperature data.315 This is because AI, particularly
the DL models, have flexible structures and can extract potential complex map-
pings of data by stacking only multiple nonlinear layers.
The Innovation 5(5): 100691, September 9, 2024 9
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 Extreme hydrological events: Pioneering solutions. The changing dy-

namics of global climate present two concerning trends in the hydrosphere: alter-
ations in water circulation patterns and the increasing frequency and intensity of
extreme hydrological events.111,320 In response to these challenges, it becomes
imperative to strengthen monitoring efforts, enhance forecasting capabilities,
and improve decision-making efficiency. AI provides important tools for moni-
toring, understanding, and forecasting extreme hydrological events such as
drought, rainstorm, and flood.122 AI can integrate a large amount of data from
various sources (e.g., satellites, meteorological stations, and other sensors) to
providemore comprehensive and accurate monitoring results of extreme hydro-
logical events.321

For example, for extreme events, Earth observation data and ML can signifi-
cantly mitigate the scarce hydrological data. Satellite-based technologies, which
encompass a wide array of sensors operating across different regions of the
electromagnetic spectrum—such as visible, thermal, and microwave do-
mains—offer considerable potential. Advanced sensors, including synthetic aper-
ture radar (SAR), satellite-based precipitation measurements, and gravity mea-
surements, are emerging as transformative tools for the forecasting and
monitoring of extreme events.322 Concurrently, the robustness and transferability
of ML techniques are proving instrumental in predicting floods in ungauged river
basins.122

Moreover, AI can analyze and learn from historical data and meteorological
forcings (such as precipitation and temperature), and identify the interactions be-
tween different environmental factors, and thus help understand the causes and
patterns of extreme hydrological events.323 Furthermore, by using AI, short-term
forecast of hydrological events can be made based on real-time hydrological
data, providing timely support for emergency response. Short-term flood fore-
casting, which spans from a few hours to several weeks, predominantly utilizes
meteorological forecasts to enhance model prediction performance and ensure
physical consistency. For example, Xu et al.324 have summarized numerous hy-
drological forecast models in this context. The prevailingmethods for short-term
flood forecasting integratemeteorological inputs (such as precipitation and tem-
perature) with optional historical data to predict runoff or flooding events.

Meanwhile, combining meteorological and hydrological models, AI can fore-
cast the long-term trend of extreme hydrological events, helping decision-makers
to make long-term plans.325 Long-term forecasting of extreme events, which in-
cludes sub-seasonal, annual, and decadal outlooks, remains a significant chal-
lenge due to inherent data andmodel uncertainties. Currently, hybrid learning ap-
proaches324 that combine physical modeling with ML are being employed to
reduce model uncertainties and mitigate the reliance of data-driven models on
extensive data inputs. In addition, uncertainties in data (such as precipitation)
can be addressed by integrating low-latency satellite observation data with reli-
able climate prediction models. In summary, AI has brought new opportunities
for hydrological cycle research to better understand and cope with extreme hy-
drological events. With the rapid development of computer technology and the
emergence of new interpretable AI methods, the role of AI in the hydrosphere
(particularly in extreme hydrological events) will become more prominent in
the future.
Cryosphere
The cryosphere refers to frozen components of the Earth system,326 overlap-

ping with the atmosphere, the hydrosphere, and the lithosphere over vast areas,
exhibiting a sensitive response and holding a significant impact on climate
change.327,328 Numerous scholars focused on developing AI methods for ad-
dressing the challenging geoscientific questions in cryosphere research, such
as the AI for Cold Regions, bringing new perspectives and innovative solutions
in element classification and automaticmapping, feature spotting, physical prop-
erties retrieval, and interpretation of the cryosphere changes.329

Cryosphere element identification. AI overcomes ambiguity in the cryo-
sphere element identification caused by feature similarity, superseding manual
interpretation, and limited empirical approaches. One notable application of AI
is that it enhances our comprehension of the spatiotemporal distribution of
the cryosphere by better classifying its elements, such as distinguishing ice cover
types,330 especially debris-covered glaciers,331 which were difficult for band ra-
tios/indices. AI can overcome inherent complexities to generate high-resolution
maps of permafrost, a critical component of the cryosphere.332 Kuter et al.333

applied artificial neural networks to estimate areal snow cover extent with high
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accuracy, thus able to provide timely and reliable information on snow cover dy-
namics. Convolutional neural networks have proven effective in classifying sea
ice types with higher accuracy and less sensitivity to noise in SAR images.334

Coincidentally, AI achieves automatic and reliable iceberg detection in different
environmental conditions and improves understanding of iceberg dynamics in
polar regions.335 In essence, AI plays a significant role in spearheading our under-
standing of the cryosphere by overcoming traditional limitations in element
identification.
Feature spotting. In addition to classifying the cryosphere elements, AI aids

in the identification of specific features of these elements that were previously
challenging to detect. Specifically, AI has advanced the identification of wet
and dry snow, especially in vegetated and mountainous areas where traditional
methods struggle to differentiate between snow types.336 AI enabled robust and
automated detection of snow avalanches for enhancing safety measures in
mountainous regions.337 In glaciological research, AI has been utilized to map
glacier calvingmargins338 aswell as glacier termini339 toward comprehensive as-
sessments of glacier mass loss. Qayyum et al. developed a DL-based glacial lake
extraction method with noteworthy benefits in monitoring glacial lakes, a key in-
dicator of potential glacial lake outburst floods.340 In permafrost research, ML
performed analysis on the distribution of retrogressive thaw slumps341 and
extraction of ice-wedge polygons.342 Beyond that, AI has been used to improve
the quantification of sea ice surface coverage types, and also to extract Antarctic
ice shelf fronts from Sentinel-1 Imagery343 and to classify ice crystal habitats
more precisely than traditional methods.344 Therefore, AI plays a key role in pro-
moting frontiers in cryospheric research by enabling the detection and character-
ization of specific features within cryospheric elements.
Properties retrieval. Different from traditional and complex physical models,

AI enables simplified yet accurate property retrieval by modeling multivariate
nonlinear relationships between cryospheric element parameters and image
characteristics. This paradigm shift has led to significant advancements in un-
derstanding cryospheric processes. For example, AI improves the retrieval accu-
racy of the cryosphere properties in coalition with conventional algorithms, such
as retrieval of snow depth345 and estimates of snow water equivalent,346,347

providing new insights to hydrological processes in cold regions. AI helped to
solve the problem of detecting each internal ice layer uniquely to estimate their
thickness accurately, thus providing crucial insights for assessing the contribu-
tions of ice sheets to sea level rise.348 In permafrost research, AI has been applied
to estimate mean annual ground temperature and active layer thickness and to
estimate the thaw depth variations at seasonal scale.349 AI has achieved better
performance in Arctic sea ice thickness estimation, a key indicator of Arctic
climate change.332 In addition, AI has helped to reconstruct the winter glacier
mass balance, a quantitative expression of glacier volume change through
time, filling the gap in ground observations and providing valuable insights into
long-term glacier volume changes.350 Therefore, AI has led the way in stream-
lined and accurate cryosphere property retrieval.
Trend projection. AI significantly improves trend forecasting across diverse

and complex conditions by developing sophisticated models that enhance
spatiotemporal scope and precision. AI facilitates the investigation of historical
cryospheric changes of possible trends, such as improving the prediction sensi-
tivity of arsenic or manganese in groundwater and identifying trends that may
not be apparent through traditional methods alone.351 Similarly, AI was used
to model the future responses of permafrost to climatic changes,352 including
permafrost degradation trends,331 overcoming limitations of environmental con-
ditions. In addition, AI was applied to estimate snow avalanche hazards for a bet-
ter prediction of occurrence andmagnitude.353 AI also advanced the range of ac-
curate sea ice forecast.354 Regarding iceberg research, AI has been used to
estimate the surface area and masses of icebergs,334 which has operational dif-
ficulties in large-scalemonitoring by observational and remote sensingmethods.
Therefore, AI-driven approaches significantly propel trend forecasting and predic-
tive modeling within the cryosphere, providing valuable insights into historical
changes, future projections, and operational challenges.
Cryospheric water storage dynamics and sea level rise. The cryosphere, a

critical component of Earth’s climatic system, is rapidly diminishing due to the
effects of global warming. This trend is particularly evident in glaciers, including
the massive Greenland and Antarctic ice sheets, which are experiencing
accelerated mass loss. Moreover, sea ice coverage and snow extent are
decreasing, while permafrost is undergoing significant degradation. This shrink-
ing cryosphere is directly contributing to rising sea levels, posing imminent and
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long-term threats to low-lying coastal areas and small island nations. In addition,
inmountainous regions and high plateaus, the reduction of cryospheric elements
is causing fluctuations in river runoff, exacerbating water scarcity and increasing
the risk of flooding in vulnerable areas. Cryospheric elements, such as glaciers,
snowpacks, permafrost, sea ice, and ice caps, possess 3D or stereo characteris-
tics. Traditional Earth observation methods often provide surface properties or
limited-depth information, hindering comprehensive assessments of cryospheric
elements. AI presents an opportunity to enhance our understanding of the 3D
properties of cryospheric elements. For instance, AI can provide improved
models of the active layer in permafrost and quantitatively assess the future con-
ditions of permafrost.349 AI-enhanced algorithms can better align with field data
of snow depth.345 Similarly, AI can improve sea ice thickness estimation algo-
rithms to predict changes.355 Utilizing AI for assessing mass balance from ice
sheet volumes has the ability to estimate its contribution in sea-level rise, offering
a new methodology of climate change studies.356 In addition, AI has improved
the precision of identifying each internal ice layer thickness in radar images, over-
coming the limitations of traditional feature detection.348 By combining Earth
observation technologies, physical modeling, and AI techniques, researchers
can delve deeper into the interior of the cryosphere, gaining crucial insights
into its formation, evolution, and distribution. This integrated approach not only
improves our understanding of cryospheric stereoscopic characteristics, but
also enhances climate change research, particularly concerning cryosphere
melting and its implications for sea-level rise.
Biosphere
Recent advances in satellites and aerialmissions have led to the accumulation

of ecological data streams, leading to the development trend of ML and DL
models to advance our knowledge of the biosphere, including ecological param-
eter inversion and characteristics mapping.113,357–362

Vegetation properties mapping. Utilizing automatic learning of relationships
between hundreds of bands and target variables, ML techniques such as deci-
sion trees, neural networks, and support vector machines have demonstrated
exceptional efficiency in mapping vegetation structural and biochemical proper-
ties, encompassing leaf chlorophyll content, vegetation nitrogen, canopy cover,
and leaf area index. In addition, ML algorithms play a crucial role in upscaling car-
bon fluxes (e.g., gross primary production, net ecosystem exchange, and
ecosystem respiration) at regional and global scales.

Extracting vegetation variables is essential for evaluating how vegetation re-
sponds dynamically to fluctuating environmental conditions.12 Utilizing auto-
matic learning of relationships between hundreds of spectral bands and target
variables, ML techniques such as decision trees, neural networks, and support
vector machines have displayed outstanding performance in mapping vegeta-
tion structural and biochemical properties. These advanced algorithms effec-
tively quantify parameters such as leaf chlorophyll content,363,364 vegetation ni-
trogen,365 canopy cover,364,366,367 and leaf area index,368–370 showcasing a
substantial improvement over traditional empirical methods. These AI-driven
models offer not only increased accuracy but also remarkable scalability and
adaptability across different environmental conditions.371–373

Ecological parameter retrieval. In addition to mapping the vegetation prop-
erties and carbon fluxes, AI has advanced the precise identification of critical
ecological parameters that were previously challenging to detect quickly and
widely in terms of fine scale. Specifically, AI has achieved better performance
in 3D structural parameters of forests such as leaf morphology,91 tree height,374

tree diameter at breast height,375 and ground vegetation canopy size.39 Similarly,
AI techniques have also been employed in marine plankton structure.376 In addi-
tion, AI helped to solve the problemof detecting andmonitoring ecological distur-
bance.370 Previous attempts have been based on laborious and complex hand-
crafted extraction of image features, but in recent years it has been shown that
sophisticated convolutional neural networks can learn to extract relevant fea-
tures automatically,377without human intervention. Automated image interpreta-
tion with convolutional neural networks performs very well for monitoring forest
diseases and pests, close to human performance, and that makes professional
field campaigns less costly.225 In agricultural monitoring research, AI promotes
the identification of malnourished crops, thereby assisting in the precise man-
agement of farmland.378 Furthermore, AI has made significant progress in
fine-scale geographic information simulation and prediction. Specifically, the
rapid development of DL has notably enhanced the precision of urban character-
ll
istics simulating refined features more precisely than traditional methods.379 AI
also advanced the refined simulation of surface temperature and addresses the
previously unresolved issue of fine simulation of extreme urban heat island
effects.380

Fine-scale ecology analysis. Onevenfiner scales, AI has achievedbetter per-
formance in identifying ecological elements, promoting quantitative research on
micro-ecosystems. In the research of diagnosing insects, AI techniques have
reached 97% accuracy and outperformed a leading taxonomic expert.381,382

For the identification and classification of vegetation pollen, DL technology has
achieved automated pollen analysis methods,383 which greatly solves the labor
cost of labor-intensive pollen analysis in the past and significantly improves anal-
ysis efficiency. In addition, as a crucial means of extracting geographic informa-
tion, classification technology has evolved further with the aid of AI founda-
tions.367,384 Currently, DL exhibits significant advantages in urban canopy
detection370 and tree species classification,309 among others. By training with
a large amount of data, DL-based models can achieve good prediction results
for complex phenomena, such as crop element classification385 and high-preci-
sion urban land element classification.386 Simultaneously, existing experimental
results demonstrate the superiority of the proposedAImodel for both road detec-
tion and centerline extraction tasks.387 Meanwhile, the integration of DL with
high-resolution remote sensing images enables the refinement of ground feature
statistics, which has advantages for separating and interpreting the desired infor-
mation accurately over traditional remote sensing algorithms. For example, the
U-Net neural network was employed to count trees in Africa,377,388 which has
operational difficulties in large-scale monitoring by observational and remote
sensing methods. Overall, there is little doubt that there are many opportunities
for trait-based ecology to benefit from the integration of computer vision and AI.
Global carbon budget. Accurate assessment of carbon dioxide uptakes and

emissions of the terrestrial biosphere is critical to better understand the global
carbon cycle, support the development of climate policies, and project future
climate change.93,384 AI plays an extremely important role in integrating satellite
remote sensing and carbon fluxes from in situ observations to achieve high-pre-
cision, high-resolution scientific data on carbon fluxes of terrestrial ecosystems
at regional and global scales.228,389 For example, ML has been applied to esti-
mated global plant gross primary production, net ecosystem exchange,
ecosystem respiration, and soil respiration by integrating multi-source remote
sensing data (i.e., various temperature, moisture, and plant production-related
remote sensing products) and carbon fluxes data from ground observa-
tions.390,391 The comparative advantages of AI over traditional methods are pri-
marily due to its ability to effectively incorporate nonlinear relationships between
remote sensing data and carbon fluxes. Thus, AI could assist the global carbon
budget by providingmore accurate and higher-resolution global plant production
and ecosystem respiration detection.
Other domains
In addition to the aforementioned five spheres, AI is also significantly involved

in other domains such as anthroposphere and inter-/cross-spheres, along with
the engagement in sustainable development, opening new perspectives for anal-
ysis, interpretation, and fostering a more balanced relationship between human
society and Earth’s systems.392

Human activities understanding. Al plays a crucial role in comprehending
and managing Earth’s complex systems and environments, serving as a formi-
dable toolset to glean insights, anticipate trends, and devise effective strategies
for sustainable development and resource management. AI’smultifaceted appli-
cations are particularly evident in its utilization by scientists for the analysis of
real-time video streams derived from surveillance cameras and satellite imagery.
This analytical prowess enables behavior analysis and large-scale monitoring of
human activities, thereby offering invaluable insights into lifestyle patterns and
social dynamics.393 By harnessing AI-driven analytics, researchers can discern
nuanced behavioral patterns, trackmovement trends, and identify emergent phe-
nomena, facilitating a deeper understanding of human interactions with the envi-
ronment and informing evidence-based decision-making processes.
Furthermore, AI serves as a cornerstone in the realm of urban development

assessment, facilitating comprehensive analyses including diverse facets
such as urban expansion, infrastructure changes, etc.394 Leveraging AI-powered
algorithms, urban planners and policymakers can assess the spatial dynamics of
urban growth, anticipate infrastructure demands, optimize transportation
The Innovation 5(5): 100691, September 9, 2024 11
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 networks, and devise sustainable land-use strategies. By amalgamating geospa-

tial data with advanced analytical techniques, AI empowers stakeholders to
make informed decisions aimed at fostering resilient, inclusive, and environmen-
tally sustainable urban environments.

In tandem with its applications in physical environment monitoring, AI as-
sumes a pivotal role in unraveling the intricacies of human behavior and prefer-
ences in the digital sphere. Social media analysis augmented by AI algorithms
offers a potent lens through which online behavior and preferences can be dis-
cerned, thereby facilitating targeted advertising, personalized recommendations,
and sentiment analysis.146,395 By scrutinizing vast troves of user-generated con-
tent, AI-driven analytics can unveil latent trends, identify influencers, and gauge
public sentiment, thereby enabling businesses and marketers to tailor their stra-
tegies to resonate with their target audience effectively.

In a word, AI’s integration into Earth’s complex systems and environ-
ments represents a paradigm shift in our ability to comprehend, monitor,
and manage the multifaceted interplay between human activities and the
natural world. By harnessing AI-driven analytics, researchers, policymakers,
and businesses can unlock unprecedented insights, foster informed deci-
sion-making, and pave the way for a more sustainable and resilient future.
However, it is imperative to acknowledge and address the ethical, privacy,
and equity considerations inherent in the deployment of AI-powered sys-
tems, ensuring that these technologies are leveraged responsibly to serve
the collective interests of humanity.

Spheres’ interactions. AI has emerged as a powerful tool for capturing inter-
layer relationships and enhancing simulations of biogeochemical cycles.393 By
leveraging AI techniques, such as DL, researchers can gain deeper insights
into Earth’s historical evolution and phenomena such as the snowball Earth
event.168 One notable advantage of AI in this context is its ability to improve
computational efficiency396 and parameter optimization,397 thereby facilitating
more accurate and robust simulations. In addition, AI aids in predicting matter
exchange patterns and developing effective adaptation strategies to manage
environmental changes.

Furthermore, AI contributes to refining our understanding of Earth’s energy
budget by integrating DL algorithms with remote sensing applications and incor-
porating biogeophysical feedback into models of the water cycle.398,399 This
interdisciplinary approach enables researchers to assess land surface changes
and their impacts on energy budgets. Moreover, AI helps address the risks asso-
ciated with over-parameterization in models, ensuring that simulations remain
realistic and reliable. By identifying critical thresholds that trigger extreme events
in Earth’s systems, AI plays a crucial role in various applications, including vol-
cano alerts,400 groundwater mapping,401 and studying climate-vegetation rela-
tionships.402 This capability is crucial for improving early warning systems and
mitigating the impacts of natural disasters on human populations and
ecosystems.

The potential of AI extends beyond individual applications to regulating inter-
layer dynamics and foreseeing thresholds that transform interactions at different
scales. This proactive approach to exploring Earth’s systems and managing its
resources holds promise for sustainable Earth management. By leveraging AI
technologies, researchers in geoscience can better anticipate and respond to
environmental challenges, paving theway formore effective conservation efforts
and informed policy decisions.

In conclusion, AI offers significant opportunities for advancing our understand-
ing of Earth’s complex systems and enhancing our ability tomanage and protect
the planet. By harnessing AI’s capabilities in capturing inter-layer relationships,
optimizing simulations, and identifying critical thresholds, researchers can
contribute to proactive exploration and sustainable Earth management. Howev-
er, realizing this potential requires continued interdisciplinary collaboration and
the responsible deployment of AI technologies in geoscience research and envi-
ronmental conservation efforts.

Sustainable development goals. The United Nations’ 2030 Agenda outlines
17 interlinked goals that are set to solve development issues in economic, so-
cial, and environmental dimensions and realize sustainable development by
2030.403 These goals interrelate closely with the Earth’s spheres (lithosphere,
hydrosphere, atmosphere, biosphere, and anthroposphere), aiming to ensure
their equilibrium for human well-being and environmental sustainability. The ap-
peal of leveraging AI to advance social benefits and achieve sustainable devel-
opment goals (SDGs) has captured the attention of numerous practitioners and
researchers.404,405 For instance, in exploring the 169 targets outlined for the 17
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goals, Vinuesa et al.406 demonstrated that AI serves as an enabler for 134 tar-
gets while acting as an inhibitor for 59 targets. Gupta et al.407 and Nasir
et al.408 delved into discussions about the implications of AI on the SDGs at
the indicator level.

(1) Economic sustainable development goals. The technological benefits
facilitated by AI also hold the potential to positively impact the attain-
ment of several SDGswithin the Economy group (SDGs 8, 9, 10, 11, and
12). Acemoglu and Restrepo indicate a net positive effect of AI-enabled
technologies linked to increased productivity, highlighting potential
negative consequences, particularly heightened inequalities.409 If
future markets heavily rely on data analysis and these resources are
not equitably available in low- and middle-income countries, it could
significantly widen the economic gap, exacerbating inequality even
within nations.410

(2) Social sustainable development goals. For SDGs 1, 2, 3, 4, 5, 7, 16, and
17, in the social group, AI acts as an enabler for all the targets by sup-
porting the provision of food, health, water, and energy services to the
population, enhancing poverty mapping, identifying vulnerable popula-
tions, and optimizing resource allocation.411,412 AI-based applications,
including smart traffic management, waste management, and energy-
efficient infrastructure, etc., contribute to developing sustainable and
resilient urban developments.413,414

(3) Environmental sustainable development goals. The potential of AI ex-
tends to the analysis of extensive interconnected databases for collab-
orative initiatives aimed at environmental preservation (SDGs 6, 13, 14,
and 15).411 AI aids in water management through predictive analytics,
monitoring water quality, and optimizing distribution networks.415 AI is
also poised to create low-carbon energy systems with the integration
of renewable energy and essential components in climate 800 change,
such as detecting the forest changes in satellite images to support
habitat monitoring and decision-making.416,417
LARGE MODELS IN GEOSCIENCE
In this section, our principal objective is to elucidate the most recent develop-

ments associatedwith largemodels in geoscience,418 alongside the presentation
and summary of representative geoscience pre-trained foundation models.

Progress and application of large models in geoscience
The advent of large language models, prominently illustrated by

ChatGPT, has significantly advanced diverse domains, concurrently em-
powering AI technologies to facilitate remarkable scientific progress,
notably in geoscience. This is achieved through the autonomous calibra-
tion of billions of parameters during training, thereby enhancing represen-
tational capacity and learning capability.68,419–422 The application of
large models in geoscience, despite its unique challenges, has
already demonstrated its huge revolutionary potential over traditional
methods,18,146,171,211,419,423–425 with the most noteworthy advances in
the fields of remote sensing, atmosphere, ocean, and hydrology.323,426–430

Specifically, the remote sensing domain owns the most diverse data in the
entire Earth science field.431,432 General applications such as object detection,
semantic segmentation, scene classification, and change detection from
various data sources promoted the development of large models in remote
sensing, such as the largest spectral remote sensing foundation model,433

with an effective method for expanding and fine-tuning ViT.434 Recently, AI
Earth—based on a universal segmentation model (AIE-SEG) —was proposed
by Alibaba to quickly extract any target in remote sensing images, achieving
unified image segmentation tasks and rapid extraction of “zero samples of
all things” without any labeled data. A new AI model called “segment anything
model” from Meta AI can “cut out” any object in any image with zero-shot
generalization to unfamiliar objects and images, without the need for additional
training.435 IBM and NASA have also teamed up to develop an open-source, ge-
ospatial foundation model that will enable researchers and scientists to utilize
AI to track the amount of satellite data.436 Furthermore, there is rapid develop-
ment in multimodal remote sensing large models. For instance, SkySense158 is
a generic billion-scale model pre-trained on a curated multi-modal remote
sensing imagery dataset with 21.5 million temporal sequences. In addition,
www.cell.com/the-innovation
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large-scale vision-language models, such as EarthGPT,437 have garnered signif-
icant attention in the remote sensing field, aiming to unify various remote
sensing tasks and multi-sensor images. In a general sense, it can be observed
that the utilization of large computer vision models and the efficient exploita-
tion of vast remote sensing datasets to enhance the recognition of various tar-
gets represents a prominent trajectory in the evolution of large remote sensing
models.

In the climate and weather domains, numerous large models with a great
amount of data and parameters have been trained for predictions. For example,
a Fourier forecasting neural network (FourCastNet) is proposed to provide imme-
diate accurate short to medium-range global weather predictions.438 The predic-
tive outcomes derived from the FourCastNet model have been meticulously
juxtaposedwith the findings of the integrated forecasting system. It has been as-
certained that the FourCastNet model exhibits substantial advantages across a
multitude of performance indicators, with a particular emphasis on its notable
progress in the domain of precipitation forecasting. Notably, the accuracy of
the FourCastNet model surpasses that of other ones by an impressive margin,
exceeding 20%. Pangu-Weather,187 which harnesses the power of the 3D
Earth-specific Transformer, has been empirically demonstrated to yield superior
results, accompanied by a remarkable acceleration of 10,000 times, in contrast
to the ECMWF. The proposal of NowcastNet,232 a nonlinear nowcasting model
for extreme precipitation, signifies a novel approach that unifies physical-evolu-
tion schemes and conditional-learning methods within a neural network frame-
work. This model has proven its capacity to skillfully forecast extreme precipita-
tion events characterized by advective or convective processes, previously
deemedchallenging to predict.MetNet-3,439 a collaborative development byGoo-
gle and DeepMind, has enhanced high-resolution predictions of several weather
variables, encompassing precipitation, surface temperature, wind speed, and
wind direction, for a forecast horizon extending up to 24 h. GenCast440 proposes
a generativemodel for globalmedium-range ensembleweather forecasting up to
15 days ahead, utilizing a diffusion model to sample ensembles from future
weather trajectories. In addition, the swift advancement of large language
models has positively impacted climate-related endeavors. For example,
ClimateGPT441 serves as a specialized conversational agent for climate change
and sustainability topics in English and Arabic.

Concurrently, there have been recent propositions in the development of gen-
eral geoscientific large-scale models. In the context of hydrology, a foundation
platform, HydroPML,323 is proposed for hydrological applications based on
physics-aware ML. It bridges the gap between large language models and pro-
cess-based hydrology, offering a range of applications, including but not limited
to rainfall-runoff-inundation modeling,122 real-time flood forecasting,321 and cut-
ting-edgemethods to enhance water security and foster resilient water manage-
ment. The first-ever large language model in the ocean domain, OceanGPT,429 is
introduced as an expert in various ocean science tasks. In the domain of disaster
management and response, Disaster Response GPT is proposed to provide a
versatile and adaptive framework for addressing various types of disasters
and their associated challenges.442 Furthermore, large models for time series
forecasting, including variables such as wind and weather, have been proposed,
leveraging a transformer backbone and zero-shot transfer.443

In summary, substantial advancements have been made in remote sensing
and climate domains by deploying largemodels and effectively utilizing extensive
datasets. However, widespread adoption of these methods on a broad scale re-
mains challenging, particularly in extreme weather prediction. Progress in other
geoscience areas, such as disaster prevention and hydrology, has been hindered
by limited access to datasets and computing resources, slowing down the devel-
opment of large language models. In the future, developing a unified, interpret-
able, and continuously learning large model to address the complexities and
scales of geoscience will be a focus of ongoing exploration.
Pre-training of large geoscience models
Table 1 illustrates the schematic representation of the foundation of pre-

trained models in geoscience. In the realm of remote sensing, various ap-
proaches have emerged, for instance, MoCo-V2with geographic location serving
as an agent task in conjunction with contrast learning for basemodel training,154

CSPT using knowledge migration and image mask learning to enhance the
expressive capability of the pre-trained model,444 SeCo constructing positive-
negative sample pairs from different seasons to effectively utilize unlabeled
ll
multi-seasonal data.445 Wuhan University introduced the Billion Visual Trans-
former model,446 exploiting a masking strategy for pre-processing, and achieved
notable performance in image classification, target detection, and semantic seg-
mentation. SatMAE,447 proposed byStanfordUniversity, adopts a groupedmask-
ing strategy formulti-temporal andmulti-channelmultispectral images. Recently,
Hong et al.433 designed the first and largest customized foundation model for
spectral remote sensing data, i.e., SpectralGPT, achieving state-of-the-art perfor-
mance in various downstream applications. Simultaneously, the work448 com-
bines SAR and multispectral images for a contrast learning approach. Another
study449 employs contrast learning, image filling, and deformation prediction
as agent tasks to enhance the generalization of the pre-trained model. Re-
searchers at the University of California, Berkeley focus on spatial scale informa-
tion, modeling low-frequency and high-frequency details separately in the recon-
struction layer.450 In addition, Hong et al.451 explored multimodal fusion on
various image types, including optical images, SAR images, digital elevation
models, and MAP data,452 which innovated a new paradigm of multimodal AI
big models for Earth observation, unlocking the Earth observation capability of
remote sensing big data.453 Presto reconstructs time series images through
stacking and employing randomizedmasking strategies. Furthermore, GFM em-
ploys a teacher-student two-streamnetwork on large-scale datasets,454 excelling
in scene classification, change detection, and semantic segmentation. Satvit ex-
plores the role of the MAE framework in analyzing satellite remote sensing
data.455

In a distinct domain, ClimaX is pre-trained on the CMIP6 climate dataset,428 of-
fering versatility in weather and climate tasks. Notably, K2,459 a 7 billion param-
eter Earth science languagemodel fromShanghai Jiao TongUniversity, utilizes a
two-stage construction involving pre-training on a high-quality Earth science
corpus and instruction fine-tuning with a geosignal dataset. In contrast, general
visualmodels such as Sky Eye andSenseEarth 3.0 improve remote sensing inter-
pretation efficiency, leveraging Transformer-like backbones and self-supervised
learning.
In summary, algorithms designed for processing remote sensing images

exhibit variations in their emphasis on RGB, multispectral, or hyperspectral
data, tailored for application to specific downstream tasks. Notably, contempo-
rary climate and geoscience models such as K2 and ClimaX exemplify advance-
ments in addressing challengeswithin these domains, showcasing enhanced ef-
ficiency and robustness for applications in Earth science. Despite the immense
potential of large geoscience models, common research teams (usually small
groups) encounter numerous impediments in embracing large-scale (pre-
trained) models. Chiefly, constraints in resources, encompassing limited funding
and manpower, impede their capacity to conduct research and development
effectively. In addition, the intricacy of large-scale models poses a formidable
learning curve for small teams, whomay grapple with acquiring expertise across
diverse disciplines such asMLand natural language processing. In the long term,
the absence of access to comprehensive datasets and formidable competition
from large tech companies further impede their progress. Legal and ethical con-
siderations also present challenges, as small teams may lack the resources to
adeptly navigate intricate issues such as privacy and accountability. Overall, sur-
mounting these hurdleswill necessitate strategic investments, collaboration, and
concerted efforts to address legal and ethical concerns.

Deep-time digital Earth
Delving into the deep-time history of Earth is seen as a promising avenue to

unravel the mechanisms of Earth’s evolution, expose climate change patterns,
identify natural resources, and envisage the future of our planet.171,460 The
advent of big data science in recent decades provides a valuable opportunity
to tackle these questions. To expedite exploratory studies of Earth’s evolution,
there is a pressing need for an equitable, integrated database. To achieve this
goal, the Deep Time Digital Earth (DDE) project is proposed as the inaugural
“large-scale scientific project” by the International Union of Geological Sciences.
This initiative aims to facilitate deep-time, data-driven discoveries through collab-
orative efforts across nations and disciplines.461 Moreover, it introduces an open
data platform to establish connections between existing deep-time geocounts
and integrated geological data.

(1) Earth’s life evolution. The synergy of AI and data science has signifi-
cantly advanced our comprehension of Earth’s life evolution, particu-
larly concerning early complex life and mass extinctions. For instance,
The Innovation 5(5): 100691, September 9, 2024 13



Table 1. Representative pre-trained foundation models in geoscience

Application field Model Pre-trained model Objectives

Remote sensing CSPT444 ViT improving the expressive ability of the pre-
trained model

RingMo456 ViT/Swin Transformer a remote sensing foundation model with
masked image modeling

Scale-MAE450 Transformer a pre-trained framework that introduces scale
invariance into encoders that are used for a
diverse set of downstream tasks

SatMAE447 Transformer pre-training Transformers for temporal and
multi-spectral satellite imagery

pre-trained ViT427 ViT remote sensing foundation model

GFM454 ViT building geospatial foundation models via
continual pre-training

SatViT455 ViT pre-training transformers for Earth
observations

Masked ViT457 ViT self-supervised masked image reconstruction
to advance transformer models for
hyperspectral remote sensing imagery

SpectralGPT433 ViT the first customized foundation model
designed explicitly for spectral remote
sensing data

Weather and climate Earthformer458 Transformer a space-time Transformer for Earth system
forecasting

FourCastNet438 Fourier Neural Operator provide accurate short- to medium-range
global predictions

GraphCast157 GNN medium-range global weather forecasting

NowcastNet232 physics-conditional generative network a nonlinear nowcasting model for extreme
precipitation

MetNet439 U-Net + ViT high-resolution predictions of several core
weather variables

Pangu-weather187 3D Transformer accurate medium-range global weather
forecasting

ClimateX428 ViT a foundation model for weather and climate

Others K2459 Generative model (LLaMA-7B) Earth science large language model

DisasterResponseGPT442 Generative model provide a versatile and adaptive framework for
disasters

OceanGPT429 Generative model a large language model for ocean
science tasks
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ML methods are employed to analyze deep-time marine Paleozoic
data, unraveling the impact of environmental changes on biodiver-
sity.462 The pulsed extinction of early complex life was further corrob-
orated through network analysis of Ediacaran fossils.463 Furthermore,
the DDE project aims to integrate and interconnect existing deep pale-
ontological and stratigraphic databases, leveraging DL and other AI
tools to expedite biological data-driven discoveries.464

(2) Earth’s material evolution. In the context of Earth’s material evolution,
current AI-driven approaches strive to propel the evolution and discov-
ery of minerals, rocks, sediments, and fluids. Noteworthy examples
encompass the evolution of minerals,465 the cycling of sediments,466

and the interpretation of plate tectonics.467 In addition, AI-driven dis-
covery necessitates the integration of existing geomaterial databases
by the DDE, enhancing spatial and temporal coverage as well as reso-
lution in the discovery of geomaterials.

(3) Geography’s evolution. Geography’s evolution holds paramount signif-
icance in various domains, including mineral and energy resource
assessment, Earth hazard prediction, comprehending Earth’s history,
and forecasting the future. The correlation of deep Earth science data-
bases with paleogeographic reconstruction databases is an important
goal of DDE. Supported by big data analysis techniques, this combina-
The Innovation 5(5): 100691, September 9, 2024
tion has been widely used in the field of paleontology,468 paleoclima-
tology,469 and geodynamics.470

(4) Paleoclimate’s evolution. The exploration of paleoclimate assumes a
crucial role in understanding the interaction between Earth and life in
producing climate extremes and forecasting future climate changes.471

AI’s strengths in data processing, hypothesizing, and predicting within
Earth science research substantially facilitate paleoclimate reconstruc-
tion.472 Assisted by AI, the DDE can reconstruct the history of paleocli-
mate and paleoatmosphere, relying on various minerals, rocks, and
geochemical indicators preserved in Earth material.473

In summary, the establishment of a unified representation model to head the
construction of an integrated Earth science knowledgemap is one of the key pro-
grams of DDE,474,475 and a series of knowledge graphs have emerged, such as
the paleoclimate knowledge graph,476 standard carbonate microfacies,477 and
academic knowledge graph.478 With the continued emergence of geoscientific
macrolanguage models (such as K2459), AI has dramatically changed the tradi-
tional paradigm of geoscientific research. By harmonizing and integrating deep
Earth data, geological knowledge, and advanced techniques in data science
and AI, DDE is poised to advance solutions for the significant challenges in Earth
evolution research, understanding the past, present, and future of our planet.
www.cell.com/the-innovation
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REVIEW
CHALLENGES AND OUTLOOKS IN AI FOR GEOSCIENCE
The numerous cases and advanced techniques outlined in the previous sec-

tions solidly prove that AI is an expert technology at deciphering complex relation-
ships in the Earth system and predicting environmental responses with unprec-
edented accuracy. However, this is not the end of the journey; there remain
ongoing challenges and opportunities in the field of research. This section poses
the challenges and future perspectives to promote the co-development of AI and
geoscience.
Unsolved challenges of AI for geoscience
There are many unsolved challenges in AI for geoscience, particularly at the

intersection of these two fields. These challenges arise from interdisciplinary
complexities, making it difficult for scientists to identify and address the
problems.

Ethical considerations play a crucial role across all stages of geoscience disci-
plines, encompassing data collection, analysis, and distribution.479 High-resolu-
tion data, for example, raise privacy concerns,480 while socio-economic analyses
can lead to stigmatization if not handled carefully.481 The demand for explainabil-
ity grows as AI applications extend their reach into policy-making, requiring
models to be both transparent and justifiable.146 Addressing these ethical chal-
lenges involves adhering to robust ethical frameworks and guidelines, promoting
a culture of geoethical thinking and social responsibility among researchers.

Moreover, due to the biased learning knowledge by AI, the adeptness of AI in
modeling complex relationships brings about vulnerabilities related to data secu-
rity.482,483 The potential for data bias and tampering poses significant risks,
potentially leading to misrepresentations of geographical features and
misguided policy decisions. To mitigate these risks, a multifaceted approach,
including robust data validation and enhancements in AI learning specifications,
is essential. These strategies not only fortify data integrity but also improve the
resilience of AI systems against malicious manipulations.

Despite the exceptional capabilities of AI, the demand for computing re-
sources and the costs associated with data acquisition and processing
present substantial challenges.17 The computational intensity required
for models, such as predicting global climate187 or global forest fire inter-
actions,484 necessitates substantial investment in computational and
memory resources, often beyond the reach of many geoscientists. More-
over, the AI models should be energy efficient so that they can also
contribute to the NetZero agenda. To optimize performance and reduce ex-
penses, strategies such as leveraging cloud computing, applying transfer
learning, and enhancing data management practices are vital.284 These ap-
proaches help in managing the high costs and logistical demands of exten-
sive data processing, ensuring that AI applications remain both viable and
effective.
Emerging challenges in new paradigm of hybrid models
Hybrid models, leveraging the strength of physics-based models and AI, are

starting to show their charming potential as a new research paradigm in geosci-
ence. Despite their potential, they present challenges in the development of the
paradigm.

The first challenge is the uncertain interpretability within the model. While the
structure of hybrid models seems to maintain physical plausibility, and the AI
component can even effectively compensate for structural deficiency in phys-
ics-based counterpart,485,486 there remains a critical concern. Often, the balance
between physics-based and AI components in hybridmodelsmay be overlooked
due to a lack of integration knowledge within the “gray box.” The work by Acuña
Espinoza et al.487 suggests that AI-based parameterization may learn incorrect
behaviors and overwrite the physical interpretability in the hybrid hydrological
models, despite enhancing performance. This compensatory capability of AI rai-
ses questions about the true hydrological interpretability of outputs from hybrid
models. It also calls for a more cautious use of hybrid models in geoscience ap-
plications, particularly when the primary objective is to decipher geophysical pro-
cesses rather than merely improve prediction accuracy.

Another challenge in advancing this paradigm is extending these hybrid
models to accommodate large datasets and complex system interactions
inherent in global geoscience applications. As these models scale, the structural
deficiencies in the physics-based part of the hybrid model will be magnified,485

and maintaining a balance between AI fitting capabilities and physical interpret-
ll
ability will become increasingly difficult. Therefore, largemodels currently applied
in geoscience, such as the FourCastNet and Pangu-Weathermodels, are still pre-
dominantly in the data-driven paradigm and risk losing physical plausibility. This
scaling issue highlights the need for a deep understanding of geophysical pro-
cesses in hybrid models at the regional scale.

Outlook on AI for inter-spheres
While the application and knowledge of AI for intra-spheres are relatively

comprehensive, exploring inter-spheres connection in geoscience reveals signif-
icant knowledge gaps.488 These gaps arise from the challenges of integrating
fragmented knowledge across disciplines when enhancing Earth system
models. The complexity of cross-system dynamics and feedback mechanisms
complicates the encoding of multidisciplinary and multi-domain knowledge.
For instance, the biochemical and biophysical processes within the hydrological
cycle489 and the atmospheric-ocean interaction490 are crucial cases for under-
standing the hydrological cycle and predicting phenomena such as the
Madden-Julian Oscillation and El Niño Southern Oscillation, respectively. Yet,
they exhibit gaps in multidisciplinary integration.
Undoubtedly, AI has demonstrated the potential to bridge these interdisci-

plinary gaps, as demonstrated by its successful application within individual do-
mains. Several studies have already started to apply AI to forge connections
across multiple spheres. For example, AI-powered prediction models have
been used to forecast hurricanes by analyzing the complex interplay between
ocean temperatures, atmospheric conditions, and land surface characteris-
tics.491 However, advancing AI development in the inter-sphere’s context requires
greater efforts, including more robust exchanges of expert knowledge and
domain-specific insights.

Outlook of AI for exploring exoplanets
The lack of terrestrial data with viable and varied observational evidence rep-

resents a significant bottleneck in the development of geoscience. Terrestrial
exoplanets, sharing similar geophysical processes, can complement the data
gap. Planetary scientists suggest that the understanding of the cooling and
transfer of heat from the interiors of terrestrial planets can help explain the
geological evolution of Earth.492 Furthermore, studying tidal interaction on low-
mass planets can aid in understanding atmospheric circulation andmeteorolog-
ical phenomenaonEarth.493 This highlights the potential of exoplanet exploration
to offer new insights into our own planet.
In contrast to knowledge transfer from exoplanets to Earth, there remain

plenty of unknowns about the environment of exoplanets, frequently result-
ing in a less sophisticated understanding of their geophysical processes
compared with Earth. Generally, discussions about exoplanet characteris-
tics often simply rely on the knowledge of an exoplanet’s mass, radius,
or orbital distance. In this context, the power of AI can be used to decipher
the high complexity of an exoplanet’s system. Some works494,495 suggest
that AI approaches trained by biosignatures on Earth could be adapted for
searching for life on terrestrial exoplanets. Interdisciplinary application of
AI in geoscience, transferring from Earth to exoplanets, could enhance
our understanding of these distant worlds’ geophysical processes, thereby
offering a fresh perspective on Earth in the future.

Future development of AI for geoscience
Our review demonstrates the necessity of advancing AI for geoscience

research. Looking ahead, AI is poised to significantly enhance geoscience pro-
jects, supported by various government and authoritative endorsements. For
example, the ChinaMinistry of Science and Technology highlights AI as a pivotal
tool for groundbreaking research across four strategic frontiers: deep space,
deep sea, deep Earth, and “deep blue.” Similarly, NASA regards AI as an essential
component for future Earth explorations.496

Conversely, our review also acknowledges the profound and dynamic impact
of AI on our understanding of geoscience and on decision-making processes.
However, there is limited consensus on the regulations governing AI develop-
ment and usage. The United Nations Educational, Scientific and Cultural Organi-
zation497 and the EuropeanUnion’sGeneral Data ProtectionRegulation498 under-
score the importance of ethical considerations, such as privacy, interpretability,
and security in AI applications, which indicates the need for a model-data-driven
paradigm to enhance transparency in research.
The Innovation 5(5): 100691, September 9, 2024 15
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 CONCLUSION

The research paradigms in geoscience startedwith physics-basedmodels, fol-
lowed by data-driven approaches, and merged into hybrid models. This review
strives to delineate these paradigms, emphasizing the unexplored frontiers
where cutting-edge AI techniques intersect with geoscience. We put a special
focus on hybridmodels, which, leveraging domain knowledge to guide AImodels,
often require less training data while maintaining comparable accuracy, thus of-
fering enhanced efficiency and performance. The potential of large-scale AI
models in geoscience is vast, yet its realization faces challenges unique to the
domain, impeding its widespread adoption and implementation. The dichotomy
between these paradigms—space centered on explicit adherence to physical
rules versus the extraction of insights from immense data volumes—under-
scores the need for a balanced approach in contemporary geoscience.

In essence, the quest to comprehend Earth’s intricacies demands an amal-
gamation of diversemethodologies and approaches. The synergy between tradi-
tional principles andmodern AI-driven techniques holds immense promise, yet it
also presents a spectrum of challenges that require concerted efforts to over-
come. As geoscientists navigate this dynamic terrain, a harmonized blend of
methodologies stands poised to unlock profound insights into our planet’s mys-
teries, shaping the trajectory of geoscience in the years to come.
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