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ABSTRACT
We all depend on mobility, and vehicular transportation affects the

daily lives of most of us. Thus, the ability to forecast the state of

traffic in a road network is an important functionality and a chal-

lenging task. Traffic data is often obtained from sensors deployed

in a road network. Recent proposals on spatial-temporal graph neu-

ral networks have achieved great progress at modeling complex

spatial-temporal correlations in traffic data, by modeling traffic

data as a diffusion process. However, intuitively, traffic data encom-

passes two different kinds of hidden time series signals, namely

the diffusion signals and inherent signals. Unfortunately, nearly

all previous works coarsely consider traffic signals entirely as the

outcome of the diffusion, while neglecting the inherent signals,

which impacts model performance negatively. To improve model-

ing performance, we propose a novel Decoupled Spatial-Temporal

Framework (DSTF) that separates the diffusion and inherent traf-

fic information in a data-driven manner, which encompasses a

unique estimation gate and a residual decomposition mechanism.

The separated signals can be handled subsequently by the diffusion

and inherent modules separately. Further, we propose an instantia-

tion of DSTF, Decoupled Dynamic Spatial-Temporal Graph Neural
Network (D

2
STGNN), that captures spatial-temporal correlations

and also features a dynamic graph learning module that targets the

learning of the dynamic characteristics of traffic networks. Exten-

sive experiments with four real-world traffic datasets demonstrate

that the framework is capable of advancing the state-of-the-art.
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1 INTRODUCTION
Traffic forecasting is a crucial service in Intelligent Transportation

Systems (ITS) to predict future traffic conditions (e.g., traffic flow
1
)

based on historical traffic conditions [51] observed by sensors [9, 19].

This functionality fuels a wide range of services related to traffic

management [4], urban computing [52], public safety [48], and

beyond [14, 28, 34, 47].

Previous traffic forecasting studies usually fall into two cate-

gories, i.e., knowledge-driven [3] and data-driven [7, 18, 21, 41].

The former commonly adopt queuing theory for user behavior sim-

ulation in traffic [3], while neglecting the natural complexity of

real-world traffic flow. Regarding the latter, many early studies for-

mulate the problem as a simple time series (e.g., single variant time

series) prediction task [20] and address it via various conventional

statistic-based methods, such as auto-regressive integrated moving

average (ARIMA [38]) and Kalman filtering [18]. These methods do

not handle the high non-linearity of each time series well, since they

typically rely heavily on stationarity-related assumptions. More

importantly, they disregard the complex correlations among time

series, which severely limits the effectiveness of traffic forecasting.

Recently, deep learning-based approaches [21, 24, 43] have been

proposed to capture the complex spatial-temporal correlations in

traffic flow. A promising and effective way is to construct an ad-

jacency matrix to model the complex spatial topology of a road

network and formulates the traffic data as a spatial-temporal graph.

An example is shown in Figure 1(a), where each node represents a

sensor, and the signals on each node vary over time. Sequentially,

STGNN-based methods are proposed for traffic forecasting that

models the dynamics of the traffic flow as a diffusion process [21, 41],

and combines diffusion graph convolution [21] and sequential mod-

els [7, 46] to jointly model complex spatial-temporal correlations.

The former [21] models the diffusion of vehicles among sensors

in a road network, i.e., the spatial dependency. The latter [7, 46]
models the temporal dynamics, i.e., the temporal dependency.

Although encouraging results have been achieved, thesemethods

still fail to fully exploit the complex spatial-temporal correlations.

First of all, each signal (i.e., time series) naturally contains two

different types of signals, i.e., diffusion and non-diffusion signals

(which is also called inherent signal for simplicity). The diffusion

signal captures the vehicles diffused from other sensors, while the

1
An example of a traffic flow system is shown in Figure 2(a), where traffic sensors are

deployed at important locations in the road network and record the total number of

vehicles passing during a unit time interval. Over time, we can get four time series

corresponding to sensors 1 to 4, as shown in Figure 2(b).
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Figure 1: Graph structured traffic data and our proposed
framework.

non-diffusion signal captures the vehicles that are independent of

other sensors. However, almost all previous studies consider traffic

data as a diffusion signal while disregarding the non-diffusion sig-

nal. That is, they model the complex spatial-temporal correlations

coarsely. However, a reasonable solution is to exploit the complex

spatial-temporal correlations more subtly, i.e., explicitly modeling

the diffusion and inherent signal simultaneously. Second, the pre-

defined adjacency matrix in STGNN-based methods is static, and

thus such construction methods may severely restrict the repre-

sentative ability to complex road networks, making it difficult for

these methods to model the dynamics of traffic flow. We illustrate

them with examples in Figure 2. Without loss of generality, Figure

2 presents a typical traffic flow system. Important locations in the

road network are equipped with traffic sensors that record traffic

flow data, i.e., the number of vehicles during a unit time interval.

From Figure 2, we make two observations. (I) The recorded values

of each sensor are affected by two factors, i.e., the diffusion sig-

nal and the non-diffusion signal. As shown in Figure 2(a), vehicles

passing through sensor 2 (green arrow) at 8 a.m. come from two

parts. The first part is vehicles that depart directly from somewhere

in the area near the sensor (blue arrow), e.g., vehicles that drive
directly from residence to the business district to work. The other

part is vehicles diffused from adjacent areas (wine-red arrow), e.g.,
vehicles that drive from the industrial district (sensor 3) and the

agricultural area (sensor 4) to provide daily supplies. The former

is independent of other sensors, while the latter is an artifact of

the diffusion process. We call them hidden inherent time series and
hidden diffusion time series, respectively, and each time series in Fig-

ure 2(b) is a superposition of them. (II) The traffic flow within the

same road network may change over time, i.e., spatial dependency
is dynamic. An example is shown in Figure 2(c), where the traffic

at sensors 3 and 4 can significantly affect sensor 2 at 8 a.m., while

there is only a small influence at 10 a.m.

Therefore, addressing the above issues to effectively leverage all

complex spatial-temporal correlations in traffic data is essential for

improving the performance of traffic forecasting. To achieve this,

we first propose a Decoupled Spatial-Temporal Framework (DSTF)

that is illustrated in the diagram in Figure 1(b). DSTF separates the

diffusion and inherent traffic information using a the decouple block

in a data-driven manner. Furthermore, we design a dynamic graph

learning module based on a self-attention mechanism to address

the second issue. The above designs are key elements of an instan-

tiation of DSTF, called the Decoupled Dynamic Spatial-Temporal

GraphNeuralNetwork (D2
STGNN). Specifically, we first design the

decouple block shown in Figure 3, which contains a residual decom-

position mechanism and an estimation gate to decompose traffic
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Figure 2: An example of the traffic flow system.

data. The former removes the parts of signals that the diffusion and

inherent models can approximate well. Thus, the parts of signals

that are not learned well is retained. The latter estimates roughly

the proportion of the two kinds of signals to relieve the burden of

the first model in each layer, which takes the original signal as input

and needs to learn specific parts in it. Second, the dynamic graph

learning module comprehensively exploits available information

to adjust the road network-based spatial dependency by learning

latent correlations between time series based on the self-attention

mechanism. In addition, specialized diffusion and inherent mod-

els, for the two hidden time series are designed according to their

particular characteristics. A spatial-temporal localized convolution

is designed to model the hidden diffusion time series. A recurrent

neural network and self-attention mechanism are used jointly to

model the hidden inherent time series.
In summary, the main contributions are the following:

• We propose a novel Decoupled Spatial-Temporal Frame-

work (DSTF) for traffic forecasting, which decouples the

hidden time series generated by the diffusion process and

the hidden time series that is independent of other sensors.

This enables more precise modeling of the different parts

of traffic data to improve prediction accuracy.

• Based on the DSTF, a dynamic graph learning module is

proposed that takes into account the dynamic nature of spa-

tial dependency. Besides, we design a diffusion model and

a inherent model to handle the two hidden time series. The

above design forms our instantiation of DSTF, D
2
STGNN.

• We conduct extensive experiments on four real-world, large-

scale datasets to gain insight into the effectiveness of the

framework DSTF and the instantiation D
2
STGNN. Experi-

mental results show that our proposal is able to consistently

and significantly outperforms all baselines.

The paper is organized as follows. Section 2 covers related work,

and Section 3 presents preliminaries and the problem definition. In

Section 4, we present the decoupled spatial-temporal framework in

detail. Section 5 details the chosen instantiation of the framework,

D
2
STGNN. We present extensive performance experiments and

prediction visualizations in Section 6. We also report on extensive

ablation studies of different architectures, important components,

and training strategies. Section 7 concludes the paper.
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2 RELATEDWORK
With the availability of large-scale traffic data and the rise of

artificial intelligence [42], Spatial-Temporal Graph Neural Net-

works (STGNNs) are proposed tomodel the complex spatial-temporal

correlations in traffic data [21, 26, 29, 45, 49]. Generally speak-

ing, STGNNs model the traffic system as a diffusion process [21]

and combine the diffusion convolutions [21, 41] and sequential

models [7, 46] to jointly model the spatial-temporal correlation.

The diffusion convolutions are variants of Graph Convolution Net-

works (GCN [2, 8, 16]), which are well suited to deal with the

non-euclidean relationships between multiple time series in traffic

data. Sequential models, such as GRU [7], LSTM [32], and TCN [46],

are used to model temporal dependency. For example, DCRNN [21]

integrates diffusion convolution and the sequence to sequence ar-

chitecture [33] to model the diffusion process. Graph WaveNet [41]

combines diffusion convolutionwith dilated casual convolution [46]

to capture spatial-temporal correlation efficiently and effectively.

Recent works focus on designing more powerful diffusion convo-

lution models and sequential models. For example, many variants of

GCNs, such as GAT [36], MixHop [1], and SGC [39], are adapted to

STGNNs for better performance [6, 27, 31, 40, 44, 50]. The attention

mechanism [35] and its variants, which theoretically have infinite

receptive field size, are widely used to capture long-term temporal

dependencies [12] in the sequential model [37, 53]. Moreover, a few

very recent works propose to model the dynamic spatial depen-

dency [13, 51]. The idea is to learn the latent correlations between

nodes based on dynamic node feature, which is usually represented

by the combination of real-time traffic features and other external

features. For example, GMAN [51] designs a spatial attention mech-

anism by considering traffic features and node embeddings from

the graph structure to learn the attention score.

Although STGNNs have made considerable progress, we find

there is still significant room for improvement. Firstly, existing

works solely consider the traffic data as a diffusion signal while

neglecting the non-diffusion one, as discussed in Section 1. They

model the complex spatial-temporal correlations in a coarse man-

ner, which may impact model performance negatively. Secondly,

although there are a few works on modeling dynamic spatial de-

pendency, they do not consider all available information. Most of

them explore the dynamic spatial dependency based on the feature

of traffic conditions, ignoring either the constraints of the road

network topology [13], or the time [51] or node [11] information.

3 PRELIMINARIES
We first define the notions of traffic network and traffic signal, and

then define the forecasting problem addressed. Frequently used

notations are summarized in Table 1.

Definition 1. Traffic Sensor.A traffic sensor is a sensor deployed
in a traffic system, such as a road network, and it records traffic
information such as the flow of passing vehicles or vehicle speeds.

Definition 2. Traffic Network. A traffic network is a directed
or undirected graph 𝐺 = (𝑉 , 𝐸), where 𝑉 is the set of |𝑉 | = 𝑁 nodes
and each node corresponds to a deployed sensor, and 𝐸 is the set
of |𝐸 | = 𝑀 edges. The reachability between nodes, expressed as an

Table 1: Frequently used notation. Uppercase bold symbols
denote 2D matrices. Calligraphic symbols denote 3D tensors.

Notations Definitions

𝐺
The traffic network 𝐺 = (𝑉 , 𝐸) with node set 𝑉

and edge set 𝐸.

𝑁
Number of sensors (nodes) of the traffic network,

i.e., |𝑉 | = 𝑁 .

A The adjacency matrix of traffic network 𝐺 .

𝑇ℎ The number of past traffic signals considered.

𝑇𝑝 The number of future time steps to forecast.

𝐶 Number of feature channels in a traffic signal.

𝑑 Dimensionality of hidden states.

E Embedding of the sensors (nodes).

T Embedding of the time steps.

W Parameter matrix of the fully connected layer.

X𝑡 Traffic signal at the 𝑡-th time step.

H𝑡 Hidden state at the 𝑡-th time step.

X Traffic signals of the 𝑇ℎ most recent past time

steps.

Y Traffic signals of the 𝑇𝑓 nearest-future time steps.

H Hidden states over multiple time steps.

⊙ Element-wise product.

∥ Concatenation.

Concat (·) Broadcast concatenation.

adjacent matrix A ∈ R𝑁×𝑁 , could be obtained based on the pairwise
road network distances between nodes.

Definition 3. Traffic Signal. The traffic signal X𝑡 ∈ R𝑁×𝐶
denotes the observation of all sensors on the traffic network 𝐺 at time
step 𝑡 , where 𝐶 is the number of features collected by sensors.

Definition 4. Traffic Forecasting. Given historical traffic sig-
nals X = [X𝑡−𝑇ℎ+1, · · · ,X𝑡−1,X𝑡 ] ∈ R𝑇ℎ×𝑁×𝐶 from the passed 𝑇ℎ
time steps, traffic forecasting aims to predict the future traffic signals
Y = [X𝑡+1,X𝑡+2, · · · ,X𝑡+𝑇𝑓 ] of the 𝑇𝑓 nearest future time steps.

4 THE DECOUPLED FRAMEWORK
The Decoupled Spatial-Temporal Framework (DSTF) that we pro-

pose is illustrated in Figure 3. Raw traffic signals are firstly trans-

formed from the original spaceR𝑇ℎ×𝑁×𝐶 to the latent spaceR𝑇ℎ×𝑁×𝑑

by a linear layer. For simplicity, we use X ∈ R𝑇ℎ×𝑁×𝑑 in the follow-

ing as default. DSTF contains multiple decoupled spatial-temporal

layers. Given traffic signals X ∈ R𝑇ℎ×𝑁×𝑑 , the decoupled spatial-

temporal layer aims at decomposing them into two hidden signals:

X = X𝑑𝑖 𝑓 +X𝑖𝑛ℎ , whereX𝑑𝑖 𝑓 andX𝑖𝑛ℎ denote the diffusion signals
and the inherent signals, respectively. However, it is a challenging

task to separate them since we do not have prior knowledge. To this

end, we propose a residual decomposition mechanism and an esti-

mation gate in the decouple block (the green block) to decompose

the spatial-temporal signals in a data-driven manner.

4.1 Residual Decomposition Mechanism
We first design the residual decomposition mechanism, which de-

composes the traffic signals by removing the part that has been
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Figure 3: The overall architecture of the proposed D2STGNN. The decouple block (green) decomposes each time series in traffic
signals into two hidden time series, which are subsequently handled by the diffusion block (pink) and inherent block (blue).
Moreover, the dynamic graph learning module generates dynamic spatial dependency for the diffusion model.

learned by the diffusion model or inherent model in an information

reconstruction fashion. As shown in Figure 3, except for the decou-

ple block (green), the decoupled spatial-temporal layer contains a

diffusion block (pink) and an inherent block (blue), each with three

components: a primary model that learns knowledge from the input

data X∗ ∈ R𝑇ℎ×𝑁×𝑑 and generates hidden statesH∗∈ R𝑇ℎ×𝑁×𝑑 , a
forecast branch that generates the module’s forecast hidden state

H∗
𝑓
, a backcast branch that generates the best estimate of the mod-

ule’s input signalX∗
𝑏
∈ R𝑇ℎ×𝑁×𝑑 . The star indicates that this applies

to both the diffusion and the inherent blocks.

The backcast branch is crucial for the decoupling, since it recon-

structs the learned knowledge, i.e., the portion of input signals that

the current model can approximate well. Subsequently, residual

links are designed to remove the signals that can be approximated

well from the input signals and retain the signals that are not well

decomposed. Therefore, after the first (upper) residual link, we get

the input of the inherent block, i.e., the inherent signals:

Xinh = X𝑙 − X𝑑𝑖 𝑓
𝑏

= X𝑙 − 𝜎 (H𝑑𝑖 𝑓 W𝑑𝑖 𝑓

𝑏
) (1)

where X𝑙 is the input of (𝑙)-th layer, and X0 = X. Superscripts
dif and inh indicate diffusion and inherent information, respec-

tively. We use non-linear fully connected networks to implement

the backcast branch. W𝑑𝑖 𝑓

𝑏
is the network parameters, and the 𝜎

is the ReLU [10] activation function. Similarly, we conduct the

second (lower) residual link after the inherent block:

Xl+1 = X𝑖𝑛ℎ − X𝑖𝑛ℎ
𝑏

= X𝑖𝑛ℎ − 𝜎 (H 𝑖𝑛ℎW𝑖𝑛ℎ
𝑏
) (2)

where X𝑙+1 retains the residual signals that can not be decomposed

in the 𝑙-th layer. Similar to other deep learning methods, we stack

multiple decoupled spatial-temporal layers to enhance the model’s

capabilities, as shown in Figure 3. The spatial-temporal signal can

be decoupled if we design proper models for diffusion and inherent

signals according to their own particular characteristics, and each

model can focus on its specific signals.

4.2 Estimation Gate
Although the residual decomposition can decouple traffic signals in

a data-driven manner, the first model (the diffusion model in Figure

3) in each layer still faces a challenge that may fail the decoupling

process: it takes original traffic data as input, but it needs to learn

only the specific part of signals in it. To address this problem, the

estimation gate is designed to reduce the burden of the first model

by roughly estimating the proportion of the two hidden time series.

At its core, the estimation gate learns a gate value automatically

in (0, 1) based on the current node and current time embeddings.

Firstly, to take into account real-world periodicities, we utilize two

time slot embedding matrices: T𝐷 ∈ R𝑁𝐷×𝑑
and T𝑊 ∈ R𝑁𝑊 ×𝑑

,

where 𝑁𝐷 is the number of time slots of the day (determined by the

sampling frequency of sensors) and 𝑁𝑊 = 7 is the number of days

in a week. The embeddings of time slots are thus shared among

slots for the same time of the day and the same day of the week.

Secondly, we use two matrices for node embeddings, the source

node embedding: E𝑢 ∈ R𝑁×𝑑 is used when a node passes messages

to neighboring nodes, and the target node embedding E𝑑 ∈ R𝑁×𝑑 is

used when a node aggregates information from neighboring nodes.

Kindly note that the node embeddings and time slot embeddings

are randomly initialized with learnable parameters. Then, given the

historical traffic data X and embeddings of time slots and nodes,

the estimation gate can be written as:

Λ𝑡,𝑖 = Sigmoid (𝜎 ((T𝐷𝑡 ∥ T𝑊𝑡 ∥ E𝑢𝑖 ∥ E𝑑𝑖 )W1)W2)

Xdif = Λ ⊙ X𝑙
(3)

where Λ ∈ R𝑇ℎ×𝑁×1, and Λ𝑡,𝑖 ∈ (0, 1) estimates the proportion

of the diffusion signal in the time series in traffic data at time

slot 𝑡 of node 𝑖 . The symbol ⊙ denotes the element-wise product

that broadcasts to all the channels of X ∈ R𝑇ℎ×𝑁×𝑑 . W1 ∈ R4𝑑×𝑑
and W2 ∈ R𝑑×1 are learnable parameters, and 𝜎 is a non-linear

activation function, such as ReLU [10].

In addition, although we use the example of Figure 3, where the

diffusion block precedes the inherent block, they are in principle
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interchangeable since there is no significant difference in which

signal is decomposed first. We conduct experiments in Section 6.5

to verify that there is no significant difference in performance. In

this paper, we’ll still keep the diffusion-first style. Besides, we omit

the superscript 𝑙 for each symbol of the decouple block except the

input signal X𝑙 and residual signal X𝑙+1 for simplicity.

In summary, this section proposes a novel framework DSTF,

where each time series in traffic data is decoupled to the diffusion

signals and the inherent signals in a data-driven manner. Kindly

note that other components, i.e., dynamic graph learning, diffusion

model, and inherent model, remain abstract and can be designed

independently in the framework according to the characteristics

of diffusion and inherent signals. In the next section, we give an

instantiation of DSTF by carefully designing these components.

5 DECOUPLED DYNAMIC ST-GNN
By decomposing diffusion and inherent signals, the framework

enables the subsequent models to focus each on what they do best.

Here, we propose our Decoupled Dynamic Spatial-Temporal Graph

Neural Network (D
2
STGNN) as an instantiation of the proposed

framework.We cover the details of the diffusion and inherent blocks

as well as the dynamic graph learning shown in Figure 3.

5.1 Diffusion Model: Spatial-Temporal Localized
Convolutional Layer

t = Tt = T − 1

im
pa

ct
 o

n

t = T − 2

Figure 4: An example of spatial-temporal locality where 𝑘𝑠 =
𝑘𝑡 = 2. Only recent traffic signals from neighboring nodes
can diffuse to a target node.

The diffusion model aims to model the diffusion process between

nodes, where the future diffusion signals of a target node depend

on the recent values of neighboring nodes, i.e., the setting exhibits

spatial-temporal locality. Specifically, we assume that only the traf-

fic signals of 𝑘𝑠 order neighboring nodes from the past 𝑘𝑡 time

steps can affect a target node. Considering the speed of vehicles

and the sampling frequency of sensors, the typical values of 𝑘𝑠
and 𝑘𝑡 are usually 2 or 3. An example is shown in Figure 4, where

𝑘𝑠 = 𝑘𝑡 = 2. In order to capture such the diffusion process, we

design a spatial-temporal localized convolutional layer.

Firstly, we define a spatial-temporal localized transition matrix:

(Plocal)𝑘 = (P𝑘 ⊙ (1 − I𝑁 )) ∥ · · · ∥ (P𝑘 ⊙ (1 − I𝑁 ))︸                                               ︷︷                                               ︸
𝑘𝑡

(4)

where P𝑘∈ R𝑁×𝑁 is a 𝑘 order transition matrix, and 𝑘 = 1, · · · , 𝑘𝑠 .
Given the road network adjacency matrix A ∈ R𝑁×𝑁 , there are two

directions of information diffusion: the forward transition P𝑓 =

A/𝑟𝑜𝑤𝑠𝑢𝑚(A), the backward transition P𝑏 = A𝑇 /𝑟𝑜𝑤𝑠𝑢𝑚(A𝑇 ).
Therefore, (Plocal)𝑘 ∈ R𝑁×𝑘𝑡𝑁 , and (Plocal)𝑘 [𝑖, 𝑗] describes the in-
fluence of node 𝑗 on node 𝑖 in a localized spatial-temporal range.

Note that Plocal [𝑖, 𝑖 +𝑘 ′𝑁 ] (𝑘 ′ = 0, 1, · · · , 𝑘𝑡 −1) are masked to zeros

since they describe the inherent patterns of the target nodes them-

selves, which will be learned by the inherent model. For simplicity,

we abbreviate (Plocal)𝑘 as (P𝑙𝑐 )𝑘 . Secondly, corresponding to the

Eq. 4, there is a localized feature matrix X𝑙𝑐𝑡 ∈ R𝑘𝑡𝑁×𝑑 formed as:

X𝑙𝑐𝑡 = [𝜎 (Xdif
𝑡−𝑘𝑡+1W𝑘𝑡−1)

𝑇 ∥ · · · ∥ 𝜎 (Xdif
𝑡 W0)𝑇︸                                                ︷︷                                                ︸

𝑘𝑡

]𝑇 (5)

where W𝑘 is the learnable parameter and 𝜎 is the ReLU activa-

tion function. The non-linear transformation used here aims to

strengthen the expressive power of the model.

Therefore, based on the transition matrix (P𝑙𝑐 )𝑘 and feature ma-

trix X𝑙𝑐𝑡 mentioned above, we define our spatial-temporal localized

graph convolution operator with spatial kernels size 𝑘𝑠 as:

Hdif
𝑡 =

𝑘𝑠∑︁
𝑘=1

(P𝑙𝑐 )𝑘X𝑙𝑐𝑡 W𝑘 (6)

whereH𝑑𝑖 𝑓𝑡 ∈ R𝑁×𝑑 is the output of the localized graph convolution
operator at time step 𝑡 , which considers spatial information from the

𝑘𝑠 order neighbors. Next, W𝑘 is the graph convolution parameters

of 𝑘-th order, and H𝑑𝑖 𝑓𝑡 is the hidden state of subsequent time slots

that can be used to predict the diffusion part.

In addition to the road network-based transition matrices P𝑏 and
P𝑓 , we also utilize a self-adaptive transition matrix [41]. Different

from the transition matrices P𝑏 and P𝑓 , which are handcrafted

by prior human knowledge, the self-adaptive transition matrix is

optimized by two randomly initialized node embedding dictionaries

with learnable parameters E𝑢 ∈ R𝑁×𝑑 and E𝑑 ∈ R𝑁×𝑑 :

Papt = Softmax (𝜎 (E𝑑 (E𝑢 )𝑇 )). (7)

Note that the Papt ∈ R𝑁×𝑁 is normalized by the Softmax func-

tion. Therefore, it describes the diffusion process that is similar to

transition matrix P𝑏 and P𝑓 . Indeed, the matrix Papt can serve as

supplement to of the hidden diffusion process that is missed in the

road network-based transition matrices P𝑏 and P𝑓 .
Given the three transition matrices P𝑓 , P𝑏 , and P𝑎𝑝𝑡 , we can get

their corresponding spatial-temporal localized transition matrix in

Eq. 4, (P𝑙𝑐
𝑓
)𝑘 , (P𝑙𝑐

𝑏
)𝑘 , and (P𝑙𝑐𝑎𝑝𝑡 )𝑘 . We can now present our localized

convolutional layer based on the operation in Eq. 6 as follows:

Hspa
𝑡 =

∑𝑘𝑠
𝑘=1

[
(P𝑙𝑐
𝑓
)𝑘X𝑙𝑐𝑡 W𝑘1 + (P𝑙𝑐𝑏 )

𝑘X𝑙𝑐𝑡 W𝑘2 + (P𝑙𝑐𝑎𝑝𝑡 )𝑘X𝑙𝑐𝑡 W𝑘3

]
. (8)

In summary, given temporal kernel size 𝑘𝑡 and spatial kernel size

𝑘𝑠 as well as input X𝑑𝑖 𝑓 ∈ R𝑇ℎ×𝑁×𝑑 , the localized convolutional

layer generates a hidden state sequence H𝑑𝑖 𝑓
by synchronously

modeling the spatial-temporal correlations in each time step 𝑡 :

Hdif = Θ∗𝐺 (X𝑑𝑖 𝑓 ) = [· · · ,H
dif
𝑇−2,H

dif
𝑇−1,H

dif
𝑇
] (9)

where Θ denotes all the parameters mentioned in Eqs. 5, 7, and 8.

𝐺 denotes the spatial-temporal localized convolution in Eq. 8. The

output hidden state sequenceHdif
is further used to generate two

outputs, i.e., the backcast and forecast output.
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Forecast Branch: The last hidden state Hdif
𝑇

can be used to forecast

the value of the next step. In order to forecast the hidden state in

multi-step forecasting task, we follow an auto-regressive procedure

to generateHdif
𝑓

= [Hdif
𝑇+1,H

dif
𝑇+2, . . . ,H

dif
𝑇+𝑇𝑓 ], each of which is used

by a non-linear regression neural network to predict the particular

values that we are interested in.

Backcast Branch: As discussed in Section 4.1, we use non-linear

fully connected networks to implement the backcast branch, and

generate X𝑑𝑖 𝑓
𝑏

= 𝜎 (H𝑑𝑖 𝑓 W𝑑𝑖 𝑓

𝑏
), i.e., the learned diffusion part,

which subsequently is removed from the original signals by the

residual link in Eq. 1 to achieve decomposition.

5.2 Inherent Model: Local and Global
Dependency

The inherent model is designed to model the hidden inherent time se-
ries in the original signals of each node, i.e., theX𝑖𝑛ℎ . Dependencies
in time series are often divided into local and global dependencies,

a.k.a. short- and long-term dependencies [17, 25, 37]. Previous stud-

ies have shown that Gated Recurrent Units [7] (GRUs) are good

at capturing short-term dependencies, while a self-attention layer

does better at handling long-term dependencies [37]. We utilize

GRU [7] and a multi-head self-attention layer [35] jointly to cap-

ture temporal patterns comprehensively. A diagram of the inherent

model is shown in Figure 5.

Multi-head Self AttentionMulti-head Self AttentionMulti-head Self Attention

GRU GRU GRU GRU

+ + + +

⋯
Positional Encoding

⋯
⋯

⋯

Figure 5: The inherent model. Short-term dependencies are
captured by the GRU, while long-term dependencies are cap-
tured by the multi-head self-attention layer.

GRU can recurrently preserve the hidden state of history data

and control the information that flows to the next time step. Given

the input signal of inherent block Xinh
𝑡 ∈ R𝑁×𝑑 at time step 𝑡 , for

each node 𝑖 , we use the following GRU operation:

z𝑡 = 𝜎 (W𝑧Xinh
𝑡 [𝑖, :] + U𝑧Hinh

𝑡−1 [𝑖, :] + b𝑧)

r𝑡 = 𝜎 (W𝑟Xinh
𝑡 [𝑖, :] + U𝑟Hinh

𝑡−1 [𝑖, :] + b𝑟 )

Ĥinh
𝑡 [𝑖, :] = 𝑡𝑎𝑛ℎ(WℎXinh

𝑡 [𝑖, :] + r𝑡 ⊙ (UℎHinh
𝑡−1 [𝑖, :] + bℎ))

H̃inh
𝑡 [𝑖, :] = (1 − z𝑡 ) ⊙ Ĥinh

𝑡−1 [𝑖, :] + z𝑡 ⊙ Ĥinh
𝑡 [𝑖, :]

(10)

where H̃inh
𝑡 [𝑖, :] is the updated hidden state of node 𝑖 at time step

𝑡 , ⊙ denotes the element-wise product, and W𝑧 , W𝑟 , Wℎ , U𝑧 , U𝑟 ,
and Uℎ are the learnable parameters of GRU.

The GRU can capture short-term sequential information well.

However, capturing only local information is insufficient because

traffic forecasting is also affected by longer-term dependencies [37].

Hence we introduce a multi-head self-attention layer to capture

global dependencies on the top of the GRU. Given the output of

the GRU, H̃ 𝑖𝑛ℎ ∈ R𝑇ℎ×𝑁×𝑑 , the multi-head self-attention layer per-

forms pair-wisely dot product attention on the time dimension for

each node, i.e., the product is calculated between any two signals

of different time slots. Therefore, the receptive field is theoreti-

cally infinite, which is beneficial to capturing global dependencies.

Specifically, given attention head 𝑠 , the learnable project matrices

W𝑄
𝑠 ,W𝐾

𝑠 ,W𝑉
𝑠 ∈ R𝑑×𝑑 , and the output matrix W𝑂

, the attention

function of node 𝑖 can be written as:

H inh [:, 𝑖, :] = Multihead (H𝑣𝑖 )

= Concat (head1, · · · , head𝑆 )W𝑂

where head𝑠 = Attention𝑠 (H𝑣𝑖 )

= softmax (H
𝑣𝑖 W𝑄

𝑠 (H𝑣𝑖 W𝐾
𝑠 )𝑇√

𝑑
H𝑣𝑖 W𝑉

𝑠 )

(11)

where H𝑣𝑖 ∈ R𝑇×𝑑 is the feature of node 𝑣𝑖 in all time slots. All

the nodes are calculated individually in parallel with the help of

the GPU. Hence, we can get the hidden state of inherent model

H inh ∈ R𝑇×𝑁×𝑑 . Although the self-attention layer has an infinite

receptive field, it ignores relative positions in the sequence. To

take into account the position, we apply positional encoding [35]

between GRU and multi-head self-attention layer as follows:

H̃inh
𝑡 [𝑖, :] = H̃inh

𝑡 [𝑖, :] + e𝑡

e𝑡,𝑖 =

{
𝑠𝑖𝑛(𝑡/100002𝑖/𝑑 ), if 𝑖 = 0, 2, 4...

𝑐𝑜𝑠 (𝑡/100002𝑖/𝑑 ), otherwise

(12)

where e𝑡 ∈ R𝑑 is the positional embedding of time step 𝑡 . Note that

the positional encoding is not trainable.

Forecast Branch: Here, we also adopt auto-regression to generate

the future hidden state H inh
𝑓

= [Hinh
𝑇+1,H

inh
𝑇+2, . . . ,H

inh
𝑇+𝑇𝑓 ]. Specifi-

cally, we adopt a simple sliding auto-regression, rather than the

commonly used encoder-decoder architecture [33, 35] because we

do not have the ground truth of hidden inherent time series, which
are crucial when having to train a decoder.

Backcast Branch: Same as the diffusion block, we use non-linear

fully connected networks to implement the backcast branch and

generate X𝑖𝑛ℎ
𝑏

= 𝜎 (H 𝑖𝑛ℎW𝑖𝑛ℎ
𝑏
), i.e., the learned inherent part,

which is subsequently used in Eq. 2.

5.3 Dynamic Graph Learning
In this subsection, we design a dynamic graph learning model to

capture the dynamics of spatial dependency, as discussed in Section

1. The intensity of traffic diffusion between two connected nodes

changes dynamically over time in the real world. An example is

shown in Figure 2(c), where the influence between nodes is different

between 8:00 am and 10:00 am. Therefore, it is crucial to model
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dynamic transition matrices Pdy
𝑏

and Pdy
𝑓

to enhance the static ones

P𝑏 and P𝑓 by replacing them in Eqs. 8 and 4.

The core of modeling Pdy
𝑏

and Pdy
𝑓

is to ensure that the static,

dynamic, and time information in traffic data is encoded compre-

hensively. For a given time step 𝑡 , we take the historical obser-

vation as the dynamic feature. For example, given historical data

X ∈ R𝑇ℎ×𝑁×𝑑 , the dynamic information of channel 𝑐 can be for-

mulated as X𝑐 = X[:, :, 𝑐]𝑇 ∈ R𝑁×𝑇 , where 𝑐 = 1, ..., 𝑑 . In addition,

we consider the time embeddings T𝐷𝑡 ∈ R𝑑 and T𝑊𝑡 ∈ R𝑑 , which
are the embeddings used in the estimation gate in Section 4.2. Em-

ploying also two static node embedding matrices E𝑢 ∈ R𝑁×𝑑 and

E𝑑 ∈ R𝑁×𝑑 , we first obtain two dynamic feature matrices:

DF𝑢𝑡 = Concat [FC(
𝐶

∥
𝑐=1

X𝑐 ),T𝐷𝑡 ,T𝑊𝑡 , E𝑢 ]

DF𝑑𝑡 = Concat [FC(
𝐶

∥
𝑐=1

X𝑐 ),T𝐷𝑡 ,T𝑊𝑡 , E𝑑 ] .
(13)

Here, DF𝑢𝑡 ∈ R𝑁×4𝑑 , and DF𝑑𝑡 ∈ R𝑁×4𝑑 . And FC(·) is a non-linear
two-layer fully connected network that extracts features and trans-

forms the dimensionality from 𝑁 ×𝑑𝑇 to 𝑁 ×𝑑 . Further, Concat (·)
denotes broadcast concatenation. Then we use the attention mech-

anism to calculate the pair-wise mask to get dynamic graphs:

Pdy
𝑓 ,𝑡

= P𝑓 ⊙ Softmax (
(DF𝑢𝑡 W𝑄 ) (DF𝑢𝑡 W𝐾 )𝑇

√
𝑑

)

Pdy
𝑏,𝑡

= P𝑏 ⊙ Softmax (
(DF𝑑𝑡 W𝑄 ) (DF𝑑𝑡 W𝐾 )𝑇

√
𝑑

) .
(14)

W𝑄 and W𝐾 are the parameters of self-attention mechanism [35].

Matrices Pdy
𝑓 ,𝑡

and Pdy
𝑓 ,𝑡
∈ R𝑁×𝑁 can replace the transition matrices

in Eqs. 8 and 4 to enhance the model, thus completing the proposed

D
2
STGNN model. In practice, the calculation of the adjacency ma-

trix is expensive, so to reduce the computational cost, we assume

that given a limited time range 𝑇ℎ , Pdy is static, i.e., Pdy
𝑡−𝑇ℎ :𝑡 = Pdy𝑡 .

5.4 Output and Training Strategy
Assuming we stack 𝐿 decoupled spatial-temporal layers, we in-

clude the output hidden states in the forecast branches H𝑑𝑖 𝑓 ,𝑙

𝑓
=

[H𝑑𝑖 𝑓 ,𝑙
𝑇+1 , · · · ] and H 𝑖𝑛ℎ,𝑙

𝑓
= [H𝑖𝑛ℎ,𝑙

𝑇+1 , · · · ] of the diffusion and the

inherent blocks of the 𝑙-th layer to generate our final forecasting:

H = Hdif
𝑓
+ H inh

𝑓
=

𝐿−1∑︁
𝑙=0

H𝑑𝑖 𝑓 ,𝑙

𝑓
+
𝐿−1∑︁
𝑙=0

H 𝑖𝑛ℎ,𝑙

𝑓

= [
𝐿−1∑︁
𝑙=0

(Hdif ,l
𝑇+1 + Hinh,l

𝑇+1 ),
𝐿−1∑︁
𝑙=0

(Hdif ,l
𝑇+2 + Hinh,l

𝑇+2 ), · · · ] .
(15)

Then we adopt a two-layer fully connected network as our regres-

sion layer and apply it toH to generate the final predictions. The

outputs of the regression layer at each time step are concatenated

to form the final output:
ˆY ∈ R𝑇𝑓 ×𝑁×𝐶out

. Given the ground truth

Y ∈ R𝑇𝑓 ×𝑁×𝐶out
, we optimize our model using MAE loss:

L( ˆY,Y;Θ) = 1

𝑇𝑓 𝑁𝐶out

𝑇𝑓∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝐶out∑︁
𝑘=1

| ˆY𝑖 𝑗𝑘 − Y𝑖 𝑗𝑘 | (16)

Algorithm 1: The overall learning algorithm of D
2
STGNN

Input: The traffic signals over the past 𝑇ℎ time steps X, the
adjacency matrix A, time embeddings T𝐷 and T𝑊 ,

node embeddings E𝑑 and E𝑢 , the number of layers 𝐿.

Output: The prediction of traffic signals Y in 𝑇𝑓 future

time steps.

1 Calculate self-adaptive adjacent matrix A𝑎𝑝𝑡 by Eq. 7.

2 Calculate dynamic transition matrix Pdy
𝑓

and Pdy
𝑏

by Eq. 14.

3 output← [ ]

4 X0 ← X
5 for l in range(L) do
6 Calculate Xdif

according to Eq. 3 with time and node

embeddings. ⊲ Estimation gate

7 CalculateHdif ,Xdif
𝑏

according to Eq. 9 and the backcast

branch. ⊲ Diffusion block

8 Calculate Xinh
according to Eq. 1. ⊲ Decomposition

9 CalculateH inh,Xinh
𝑏

according to Eq. 11 and the

backcast branch. ⊲ Inherent block

10 Calculate X𝑙+1 according to Eq. 2. ⊲ Decomposition

11 Append the output of forecast branch of diffusion and

inherent block to the output list.

12 end
13 H ← sum(output)

14 ˆY ← MLP(H)
15 Backpropagation and update parameters according to Eq. 16.

where 𝑁 is the number of nodes, 𝑇𝑓 is the number of forecasting

steps, and 𝐶out is the dimensionality of the output. Following exist-

ing studies [20, 40], we employ curriculum learning, a general and

effective training strategy, to train the proposed model. We opti-

mize the model parameters by minimizing L via gradient descent.

The overall learning algorithm is outlined in Algorithm 1.

6 EXPERIMENTS
In this section, we present experiments on four large real-world

datasets to demonstrate the effectiveness of D
2
STGNN for traffic

forecasting. We first introduce the experimental settings, including

datasets, baselines, and parameter settings. Then, we conduct ex-

periments to compare the performance of the D
2
STGNN with other

baselines. Furthermore, we design more experiments to verify the

superiority of our decoupling framework. Finally, we design com-

prehensive ablation studies to evaluate the impact of the essential

architectures, components, and training strategies.

6.1 Experimental Setup
Datasets. We conducted experiments on four commonly used real-

world large-scale datasets, which have tens of thousands of time

steps and hundreds of sensors. The statistical information is sum-

marized in Table 2. Two of them are traffic speed datasets, while

the others are traffic flow dataset. Traffic speed data records the

average vehicles speed (miles per hour). Due to the speed limit in

these areas, the speed data is a float value usually less than 70. The

flow data should be an integer, up to hundreds, because it records
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Table 2: Statistics of datasets.

Type Dataset # Node # Edge # Time Step

Speed METR-LA 207 1722 34272

PEMS-BAY 325 2694 52116

Flow PEMS04 307 680 16992

PEMS08 170 548 17856

the number of passing vehicles. All these datasets have one feature

channel (the traffic speed or the traffic flow), i.e., 𝐶 = 1.

Construction of the traffic network. For traffic speed datasets,

we follow the procedure of DCRNN [21]. We compute the pairwise

road network distances between sensors and build the adjacency

matrix using thresholded Gaussian kernel [30]. For traffic flow

datasets, we use the traffic network provided by ASTGCN [11].

They remove many redundant detectors to ensure the distance

between any adjacent detectors is longer than 3.5 miles to obtain

a lightweight traffic network. The following gives more detailed

description of the four datasets:

• METR-LA is a public traffic speed dataset collected from

loop-detectors located on the LA County road network [15].

Specifically, METR-LA contains data of 207 sensors over a

period of 4 months from Mar 1st 2012 to Jun 30th 2012 [21].

The traffic information is recorded at the rate of every 5

minutes, and the total number of time slices is 34,272.

• PEMS-BAY is a public traffic speed dataset collected from

California TransportationAgencies (CalTrans) Performance

Measurement System (PeMS) [5]. Specifically, PEMS-BAY

contains data of 325 sensors in the Bay Area over a period

of 6 months from Jan 1st 2017 to May 31th 2017 [21]. The

traffic information is recorded at the rate of every 5 minutes,

and the total number of time slices is 52,116.

• PEMS04 is a public traffic flow dataset collected from Cal-

Trans PeMS [5]. Specifically, PEMS04 contains data of 307

sensors in the District04 over a period of 2 months from

Jan 1st 2018 to Feb 28th 2018 [11]. The traffic information

is recorded at the rate of every 5 minutes, and the total

number of time slices is 16,992.

• PEMS08 is a public traffic flow dataset collected from Cal-

Trans PeMS [5]. Specifically, PEMS08 contains data of 170

sensors in the District08 over a period of 2 months from

July 1st 2018 to Aug 31th 2018 [11]. The traffic information

is recorded at the rate of every 5 minutes, and the total

number of time slices is 17,833.

Baselines.We select a wealth of baselines that have official pub-

lic code, including the traditional methods and the typical deep

learning methods, as well as the very recent state-of-the-art works.

• HA: Historical Average model, which models traffic flows

as a periodic process and uses weighted averages from

previous periods as predictions for future periods.

• VAR: Vector Auto-Regression [22, 23] assumes that the

passed time series is stationary and estimates the relation-

ship between the time series and their lag value. [37]

• SVR: Support Vector Regression (SVR) uses linear support

vector machine for classical time series regression task.

• FC-LSTM [32]: Long Short-Term Memory network with

fully connected hidden units is a well-known network archi-

tecture that is powerful in capturing sequential dependency.

• DCRNN [21]: Diffusion Convolutional Recurrent Neural

Network [21] models the traffic flow as a diffusion process.

It replaces the fully connected layer in GRU [7] by diffusion

convolutional layer to form a new Diffusion Convolutional

Gated Recurrent Unit (DCGRU).

• Graph WaveNet [41]: Graph WaveNet stacks Gated TCN

and GCN layer by layer to jointly capture the spatial and

temporal dependencies.

• ASTGCN [11]: ASTGCN combines the spatial-temporal at-

tentionmechanism to capture the dynamic spatial-temporal

characteristics of traffic data simultaneously.

• STSGCN [31]: STSGCN is proposed to effectively capture

the localized spatial-temporal correlations and consider the

heterogeneity in spatial-temporal data.

• GMAN [51]: GMAN is an attention-based model which

stacks spatial, temporal and transform attentions.

• MTGNN [40]: MTGNN extends Graph WaveNet through

the mix-hop propagation layer in the spatial module, the

dilated inception layer in the temporal module, and a more

delicate graph learning layer.

• DGCRN [20]: DGCRN models the dynamic graph and de-

signs a novel Dynamic Graph Convolutional Recurrent

Module (DGCRM) to capture the spatial-temporal pattern

in a seq2seq architecture.

We use the default settings as described in baseline papers. We

evaluate the performances of all baselines by three commonly used

metrics in traffic forecasting, including Mean Absolute Error (MAE),

Root Mean Squared Error (RMSE) and Mean Absolute Percentage

Error (MAPE). The formulas are as follows:

MAE(𝑥, 𝑥) = 1

|Ω |
∑︁
𝑖∈Ω
|𝑥𝑖 − 𝑥𝑖 |,

RMSE(𝑥, 𝑥) =
√︄

1

|Ω |
∑︁
𝑖∈Ω
(𝑥𝑖 − 𝑥𝑖 )2,

MAPE(𝑥, 𝑥) = 1

|Ω |
∑︁
𝑖∈Ω

|𝑥𝑖 − 𝑥𝑖 |
𝑥𝑖

,

(17)

where MAE metric reflects the prediction accuracy [20], RMSE is

more sensitive to abnormal values, and MAPE can eliminate the

influence of data units to some extent. 𝑥𝑖 denotes the 𝑖-th ground

truth, 𝑥𝑖 represents the 𝑖-th predicted values, and Ω is the indices

of observed samples, where |Ω | = 𝑇𝑓 = 12 in our experiments.

Implementation. The proposed model is implemented by Pytorch

1.9.1 on NVIDIA 3090 GPU. We use Adam as our optimizer and set

the learning rate to 0.001. The embedding size of nodes and time

slots is set to 12. The other hidden dimension 𝑑 in this paper is set to

32. The spatial kernel size is set to 2, and the temporal kernel size is

set to 3 for all datasets. The batch size is set to 32. We employ early

stopping to avoid overfitting. We perform significance test (t-test

with p-value < 0.05) over all the experimental results. For any other

more details, readers could refer to our public code repository.

2740



6.2 The Performance of D2STGNN
6.2.1 Settings. For a fair comparison, we follow the dataset division

in previous works. For METR-LA and PEMS-BAY, we use about

70% of data for training, 20% of data for testing, and the remaining

10% for validation [20, 21, 40, 41]. For PEMS04 and PEMS08, we

use about 60% of data for training, 20% of data for testing, and the

remaining 20% for validation [11, 12, 31]. We generate sequence

samples through a sliding window with a width of 24 (2 hours),

where the first 12 time steps are used as input, and the remaining 12

time steps are used as ground truth.We compare the performance of

15 minutes (horizon 3), 30 minutes (horizon 6), and 1 hour (horizon

12) ahead forecasting on the MAE, RMSE, and MAPE metrics.

6.2.2 Results. As shown in Table 3, D2
STGNN consistently achieves

the best performance in all horizons in all datasets, which indicates

the effectiveness of our model. Traditional methods such as HA,

SVR perform worst because of their strong assumption about the

data, e.g., stationary or linear. FC-LSTM, a classic recurrent neural

network for sequential data, can not perform well since it only

considers temporal features, but ignores the spatial impact in traffic

data and, which is crucial in traffic forecasting. VAR takes both spa-

tial and temporal information into consideration, thus it achieves

better performance. However, VAR cannot capture strong nonlin-

ear and dynamic spatial-temporal correlations. Recently proposed

spatial-temporal models overcome these shortcomings and make

considerable progress. DCRNN and Graph WaveNet are two typical

spatial-temporal coupling models among them. Graph WaveNet

combines GNN and Gated TCN to form a spatial-temporal layer

while DCRNN replaces the fully connected layer in GRU by dif-

fusion convolution to get a diffusion convolutional GRU. Even if

compared with many of the latest works, such as ASTGCN and

STSGCN, their performance is still very promising. This may be due

to their refined data assumptions and reasonable model architec-

ture. MTGNN replaces the GNN and Gated TCN in Graph WaveNet

with mix-hop propagation layer [1] and dilated inception layer, and

proposes the learning of latent adjacency matrix to seek further im-

provement. GMAN performs better in long-term prediction thanks

to the attention mechanism’s powerful ability to capture long-term

dependency. Based on the DCRNN architecture, DGCRN captures

the dynamic characteristics of the spatial topology and achieves

better performance than other baselines. Our model still outper-

forms DGCRN. We conjecture the key reason lies in the decoupled

ST framework. In a nutshell, the results in Table 3 validate the

superiority of D
2
STGNN.

Note that the final performance is affected by many aspects: the

modeling of temporal and spatial dependencies and dynamic spatial

topology. Therefore, although Table 3 has shown the superiority of

the D
2
STGNN model, it is not enough to evaluate the effectiveness

of the proposed decoupled spatial-temporal framework.

6.3 Effectiveness of the Decoupled Framework
and the Spatial-Temporal Model

In this subsection, we conduct experiments to verify the effective-

ness of the decoupled spatial-temporal framework as well as the

diffusion and inherent model. As mentioned before, we remove the

dynamic spatial dependency learning module in all methods, e.g.,
dynamic graph learner in our model, for a fair comparison.

On the one hand, we need to compare D
2
STGNN with its variant

without the DSTF, named the coupled version of D
2
STGNN, where

the two hidden time series remain coupled like in other STGNNs.

On the other hand, we also want to compare the coupled version of

D
2
STGNN with the other STGNNs to test the effectiveness of the

diffusion and inherent model. To this end, we first replace the dy-

namic graph in D
2
STGNN with the pre-defined static graph to get

D
2
STGNN

†
. Based on it, we consider D

2
STGNN‡, which removes

the DSTF by removing the estimation gate and residual decom-

position, and connects the diffusion model and inherent model

directly. We select the two most representative baselines, Graph

WaveNet (GWNet) and DGCRN. For a fair comparison, the dynamic

adjacency matrix in DGCRN is also removed, named DGCRN†.
The result is shown in Table 4. We have the following findings.

(i) D
2
STGNN

†
significantly outperforms D

2
STGNN

‡
, which shows

that the DSTF is crucial in our model. (ii) The coupled version

D
2
STGNN

‡
can also perform better than baselines, which indicates

the effectiveness of our diffusion and inherent model. However,

the D
2
STGNN

‡
has only limited advantages compared with other

baselines, which again shows the importance of decoupling the two

hidden time series in the original traffic data.

6.4 Efficiency
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Figure 6: Average training time per epoch.

In this part, we compare the efficiency of D
2
STGNN with other

methods based on the METR-LA dataset. For a more intuitive and

effective comparison, we compare the average training time re-

quired for each epoch of these models. Specifically, we compare

the speed of D
2
STGNN, D

2
STGNN

†
(without dynamic graph learn-

ing), DGCRN, GMAN, MTGNN, and Graph WaveNet. All models

are running on Intel(R) Xeon(R) Gold 5217 CPU @ 3.00GHz, 128G

RAM computing server, equipped with RTX 3090 graphics card.

The batch size is uniformly set to 32.

As shown in Figure 6, D
2
STGNN does not increase the computa-

tional burden too much compared to other baselines. In addition,

it achieves both better performance and higher efficiency in the

same time than other state-of-the-art baselines like GMAN and

DGCRN. This is mainly due to the fact that the decoupled frame-

work (i.e.,estimation gate and residual decomposition mechanism)

focuses on developing a more reasonable structures connecting

diffusion and inherent models to improve the model’s capabilities,
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Table 3: Traffic forecasting on the METR-LA, PEMS-BAY, PEMS04,and PEMS08 datasets. Numbers marked with ∗ indicate that
the improvement is statistically significant compared with the best baseline (t-test with p-value< 0.05).

Datasets Methods Horizon 3 Horizon 6 Horizon 12

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

METR-LA

HA 4.79 10.00 11.70% 5.47 11.45 13.50% 6.99 13.89 17.54%

VAR 4.42 7.80 13.00% 5.41 9.13 12.70% 6.52 10.11 15.80%

SVR 3.39 8.45 9.30% 5.05 10.87 12.10% 6.72 13.76 16.70%

FC-LSTM 3.44 6.30 9.60% 3.77 7.23 10.09% 4.37 8.69 14.00%

DCRNN 2.77 5.38 7.30% 3.15 6.45 8.80% 3.60 7.60 10.50%

STGCN 2.88 5.74 7.62% 3.47 7.24 9.57% 4.59 9.40 12.70%

Graph WaveNet 2.69 5.15 6.90% 3.07 6.22 8.37% 3.53 7.37 10.01%

ASTGCN 4.86 9.27 9.21% 5.43 10.61 10.13% 6.51 12.52 11.64%

STSGCN 3.31 7.62 8.06% 4.13 9.77 10.29% 5.06 11.66 12.91%

MTGNN 2.69 5.18 6.88% 3.05 6.17 8.19% 3.49 7.23 9.87%

GMAN 2.80 5.55 7.41% 3.12 6.49 8.73% 3.44 7.35 10.07%

DGCRN 2.62 5.01 6.63% 2.99 6.05 8.02% 3.44 7.19 9.73%

D
2
STGNN 2.56∗ 4.88∗ 6.48%∗ 2.90∗ 5.89∗ 7.78%∗ 3.35∗ 7.03∗ 9.40%∗

PEMS-BAY

HA 1.89 4.30 4.16% 2.50 5.82 5.62% 3.31 7.54 7.65%

VAR 1.74 3.16 3.60% 2.32 4.25 5.00% 2.93 5.44 6.50%

SVR 1.85 3.59 3.80% 2.48 5.18 5.50% 3.28 7.08 8.00%

FC-LSTM 2.05 4.19 4.80% 2.20 4.55 5.20% 2.37 4.96 5.70%

DCRNN 1.38 2.95 2.90% 1.74 3.97 3.90% 2.07 4.74 4.90%

STGCN 1.36 2.96 2.90% 1.81 4.27 4.17% 2.49 5.69 5.79%

Graph WaveNet 1.30 2.74 2.73% 1.63 3.70 3.67% 1.95 4.52 4.63%

ASTGCN 1.52 3.13 3.22% 2.01 4.27 4.48% 2.61 5.42 6.00%

STSGCN 1.44 3.01 3.04% 1.83 4.18 4.17% 2.26 5.21 5.40%

MTGNN 1.32 2.79 2.77% 1.65 3.74 3.69% 1.94 4.49 4.53%

GMAN 1.34 2.91 2.86% 1.63 3.76 3.68% 1.86 4.32 4.37%
DGCRN 1.28 2.69 2.66% 1.59 3.63 3.55% 1.89 4.42 4.43%

D
2
STGNN 1.24∗ 2.60∗ 2.58%∗ 1.55∗ 3.52∗ 3.49%∗ 1.85∗ 4.30∗ 4.37%

PEMS04

HA 28.92 42.69 20.31% 33.73 49.37 24.01% 46.97 67.43 35.11%

VAR 21.94 34.30 16.42% 23.72 36.58 18.02% 26.76 40.28 20.94%

SVR 22.52 35.30 14.71% 27.63 42.23 18.29% 37.86 56.01 26.72%

FC-LSTM 21.42 33.37 15.32% 25.83 39.10 20.35% 36.41 50.73 29.92%

DCRNN 20.34 31.94 13.65% 23.21 36.15 15.70% 29.24 44.81 20.09%

STGCN 19.35 30.76 12.81% 21.85 34.43 14.13% 26.97 41.11 16.84%

Graph WaveNet 18.15 29.24 12.27% 19.12 30.62 13.28% 20.69 33.02 14.11%

ASTGCN 20.15 31.43 14.03% 22.09 34.34 15.47% 26.03 40.02 19.17%

STSGCN 19.41 30.69 12.82% 21.83 34.33 14.54% 26.27 40.11 14.71%

MTGNN 18.22 30.13 12.47% 19.27 32.21 13.09% 20.93 34.49 14.02%

GMAN 18.28 29.32 12.35% 18.75 30.77 12.96% 19.95 30.21 12.97%

DGCRN 18.27 28.97 12.36% 19.39 30.86 13.42% 21.09 33.59 14.94%

D
2
STGNN 17.44∗ 28.64∗ 11.64%∗ 18.28∗ 30.10∗ 12.10%∗ 19.55∗ 31.99 12.82%∗

PEMS08

HA 23.52 34.96 14.72% 27.67 40.89 17.37% 39.28 56.74 25.17%

VAR 19.52 29.73 12.54% 22.25 33.30 14.23% 26.17 38.97 17.32%

SVR 17.93 27.69 10.95% 22.41 34.53 13.97% 32.11 47.03 20.99%

FC-LSTM 17.38 26.27 12.63% 21.22 31.97 17.32% 30.69 43.96 25.72%

DCRNN 15.64 25.48 10.04% 17.88 27.63 11.38% 22.51 34.21 14.17%

STGCN 15.30 25.03 9.88% 17.69 27.27 11.03% 25.46 33.71 13.34%

Graph WaveNet 14.02 22.76 8.95% 15.24 24.22 9.57% 16.67 26.77 10.86%

ASTGCN 16.48 25.09 11.03% 18.66 28.17 12.23% 22.83 33.68 15.24%

STSGCN 15.45 24.39 10.22% 16.93 26.53 10.84% 19.50 30.43 12.27%

MTGNN 14.24 22.43 9.02% 15.30 24.32 9.58% 16.85 26.93 10.57%

GMAN 13.80 22.88 9.41% 14.62 24.02 9.57% 15.72 25.96 10.56%

DGCRN 13.89 22.07 9.19% 14.92 23.99 9.85% 16.73 26.88 10.84%

D
2
STGNN 13.14∗ 21.42∗ 8.55%∗ 14.21∗ 23.65∗ 9.12%∗ 15.69∗ 26.41 10.17%∗
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Table 4: Comparison of decoupled and coupled ST Frame-
work. H denotes horizon. Numbers marked with ∗ indicate
that the improvement is statistically significant compared
with the best baseline (t-test with p-value< 0.05).

GWNet DGCRN
†

D
2
STGNN

‡
D
2
STGNN

†

M
ET

R
-L
A

H
3

MAE 2.69 2.71 2.66 2.59∗
RMSE 5.15 5.19 5.10 4.99∗
MAPE 6.90% 7.04% 6.80% 6.69%∗

H
6

MAE 3.07 3.12 3.04 2.93∗
RMSE 6.22 6.31 6.13 5.97∗
MAPE 8.37% 8.60% 8.24% 7.99%∗

H
12

MAE 3.53 3.64 3.51 3.38∗
RMSE 7.37 7.59 7.27 7.07∗
MAPE 10.01% 10.62% 10.02% 9.63%∗

PE
M
S-
B
A
Y

H
3

MAE 1.30 1.32 1.31 1.25∗
RMSE 2.74 2.78 2.74 2.64∗
MAPE 2.73% 2.78% 2.76% 2.64%∗

H
6

MAE 1,63 1.66 1.63 1.55∗
RMSE 3.70 3.78 3.66 3.56∗
MAPE 3.67% 3.76% 3.66% 3.58%∗

H
12

MAE 1.95 1.99 1.94 1.85∗
RMSE 4.52 4.60 4.50 4.33∗
MAPE 4.63% 4.73% 4.59% 4.43%∗

PE
M
S0

4

H
3

MAE 18.15 18.97 18.94 17.55∗
RMSE 29.24 30.01 29.38 28.70∗
MAPE 12.27% 13.38% 13.58% 11.78%∗

H
6

MAE 19.12 20.30 20.14 18.38∗
RMSE 30.62 31.78 31.54 30.15∗
MAPE 13.28% 14.48% 15.11% 12.26%∗

H
12

MAE 20.69 22.95 22.57 19.59∗
RMSE 33.02 35.15 34.33 32.04∗
MAPE 14.11% 16.97% 17.16% 12.95%∗

PE
M
S0

8

H
3

MAE 14.02 14.54 14.49 13.28∗
RMSE 22.76 22.62 22.35 21.56∗
MAPE 8.95% 9.37% 10.14% 8.53%∗

H
6

MAE 15.24 15.64 15.69 14.26∗
RMSE 24.22 24.52 24.37 23.49∗
MAPE 9.57% 10.03% 10.41% 9.15%∗

H
12

MAE 16.67 17.80 18.01 15.65∗
RMSE 26.77 27.92 27.53 25.78∗
MAPE 10.86% 11.71% 11.81% 10.10%∗

rather than increasing the complexity of the diffusion or inher-

ent models. Graph WaveNet and MTGNN are the most efficient,

thanks to their lightweight and easily parallelized models. But their

performance is worse than other models.

6.5 Ablation Study
In this part, we will conduct ablation studies from three aspects

to verify our work: the architecture of decoupled spatial-temporal

framework, the important components, and the training strategy.

Firstly, we design four variants of our decoupled spatial-temporal

framework. Switch places inherent block before diffusion block in

each layer to verify that whether they are interchangeable.W/o gate
removes the estimation gate in the decouple block, while w/o res re-
moves the residual links.W/o decouple removes the estimation gate

and residual decomposition simultaneously (i.e., the D2
STGNN‡

in Table 4). Secondly, we test the effectiveness of four important

components.W/o dg replaces the dynamic graph with a pre-defined

static graph (i.e., the D2
STGNN† in Table 4). W/o apt removes the

self-adaptive transition matrix in the diffusion model.W/o gru re-

moves the GRU layer in the inherent model, while w/o msa removes

the multi-head self-attention layer. Thirdly, we design two variants

to test the effectiveness of the training strategy: w/o ar removes the

auto-regression strategy in the forecast branch and directly applies

a regression layer on the hidden state to forecast multi-steps at

once, w/o cl removes the curriculum learning.

The result is shown in Table 5. On the architecture aspect, switch-

ing the diffusion and inherent model does not make a significant

difference. The results of w/o gate and w/o res suggest that the
estimation gate and residual decomposition mechanism are both

important for decoupling. The results of w/o decouple show that

decoupling the two hidden signals is crucial for accurate traffic fore-

casting. On the important components aspect, the dynamic graph

learning model provides consistent performance improvements

compared with the pre-defined static graph. The results of w/o gru
and w/o msa in the inherent model show that both short- and long-

term dependencies are crucial for accurate traffic forecasting. On

the training strategy aspect, the result of w/o ar indicates that the
auto-regressive forecast strategy is more suitable for our model,

and the result of w/o cl shows that correct training strategy can

help the model to converge better.

6.6 Parameter Sensitivity
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Figure 7: Parameter sensitivity of D2STGNN.

In this section, we conduct experiments to analyze the impacts

of three critical hyper-parameters: spatial kernel size 𝑘𝑠 , temporal

kernel size 𝑘𝑡 , and hidden dimension 𝑑 . In Figure 7, we present

the traffic forecasting result on METR-LA dataset with different

parameters. The effect of spatial kernel size 𝑘𝑠 and temporal kernel

size𝑘𝑡 is shown in Figure 7(a).We set the range of𝑘𝑠 and𝑘𝑡 from 1 to

5 individually. The experimental results verify the spatial-temporal

localized characteristics of diffusion process. In addition, the effect

of hidden dimension 𝑑 is shown in Figure 7(b), which shows that a

smaller dimension is insufficient to encode the spatial and temporal

information, while the larger dimension may introduce overfitting.
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Table 5: Ablation study on METR-LA.

Variants Horizon 3 Horizon 6 Horizon 12

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

D
2
STGNN 2.56 4.88 6.48% 2.90 5.89 7.78% 3.35 7.03 9.40%
switch 2.56 4.90 6.50% 2.91 5.92 7.85 % 3.35 7.05 9.47%

w/o gate 2.60 4.98 6.63% 2.96 6.01 8.07 % 3.44 7.16 9.78%

w/o res 2.60 4.96 6.84% 2.93 5.95 8.21 % 3.37 7.10 9.80%

w/o decouple 2.66 5.10 6.80% 3.04 6.13 8.24 % 3.51 7.27 10.02%

w/o dg 2.59 4.99 6.69% 2.93 5.97 7.99 % 3.38 7.07 9.63%

w/o apt 2.58 4.92 6.51% 2.93 5.92 7.80 % 3.40 7.10 9.43%

w/o gru 2.59 4.93 6.66% 2.94 6.02 7.98 % 3.38 7.07 9.66%

w/o msa 2.59 4.95 6.60% 2.93 5.96 7.99 % 3.37 7.09 9.67%

w/o ar 2.59 4.98 6.61% 2.94 5.96 7.95 % 3.39 7.09 9.64%

w/o cl 2.62 5.01 6.70% 2.96 6.02 8.05 % 3.38 7.08 9.63%
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Figure 8: Visualization of prediction results on METR-LA.

6.7 Visualization
In order to further intuitively understand and evaluate our model,

in this section, we visualize the prediction of our model and the

ground-truth. Due to space limitations, we randomly selected two

nodes and displayed their data from June 13th 2012 to June 16th

2012 (located in the test dataset). The forecasting results on node 2

and node 111 are shown in Figure 8. It is obvious that the patterns

of the two selected nodes are different. For example, there is often

traffic congestion during the morning peak hour at sensor 2, while

sensor 111 often records traffic congestion during the evening peak

hours. The results indicate that our model can capture these unique

patterns for different nodes. Furthermore, it can be seen that the

model is very good at capturing the inherent patterns of time series

while avoiding overfitting the noise. For example, sensor 111 ap-

parently failed in the afternoon of June 13, 2012, where the records

suddenly were zero. However, our model does not forcefully fit

these noises and correctly predicted the traffic congestion. Further-

more, as shown in Figure 8, the model achieved very impressive

prediction accuracy on the whole, while the prediction in some

local details may not be accurate due to large random noise.

7 CONCLUSION
In this paper, we first propose to decouple the diffusion signal

and inherent signal from traffic data by a novel Decoupled Spatial
Temporal Framework (DSTF). This enables more precise modeling

of the different parts of traffic data, thus promising to improve

prediction accuracy. Based on the novel DSTF, Decoupled Dynamic

Spatial-Temporal Graph Neural Network(D2
STGNN) is proposed

by carefully designing the diffusion and inherent model as well as

the dynamic graph learning model according to the characteristics

of diffusion signals and inherent signals. Specifically, a spatial-

temporal localized convolution is designed to model the hidden dif-
fusion time series. The recurrent neural network and self-attention

mechanism are jointly used to model the hidden inherent time series.
Furthermore, the dynamic graph learning module comprehensively

exploits different information to adjust the road network-based

spatial dependency by learning the latent correlations between

time series based on the self-attention mechanism. Extensive ex-

periments on four real-world datasets show that our proposal is

able to consistently and significantly outperform all baselines.

ACKNOWLEDGMENTS
This work was supported in part by the National Natural Science

Foundation of China under Grant No. 61902376, No. 61902382, and

No. 61602197, in part by CCF-AFSG Research Fund under Grant No.

RF20210005, and in part by the fund of Joint Laboratory of HUST

and Pingan Property & Casualty Research (HPL). In addition, Zhao

Zhang is supported by the China Postdoctoral Science Foundation

under Grant No. 2021M703273.

2744



REFERENCES
[1] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina

Lerman, Hrayr Harutyunyan, Greg Ver Steeg, and Aram Galstyan. 2019. Mixhop:

Higher-order graph convolutional architectures via sparsified neighborhood

mixing. In international conference on machine learning. PMLR, 21–29.

[2] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2014. Spectral

Networks and Locally Connected Networks on Graphs. In 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16,
2014, Conference Track Proceedings. http://arxiv.org/abs/1312.6203

[3] Ennio Cascetta. 2013. Transportation systems engineering: theory and methods.
Vol. 49. Springer Science & Business Media.

[4] Suresh Chavhan and Pallapa Venkataram. 2020. Prediction based traffic man-

agement in a metropolitan area. Journal of traffic and transportation engineering
(English edition) 7, 4 (2020), 447–466.

[5] Chao Chen, Karl Petty, Alexander Skabardonis, Pravin Varaiya, and Zhanfeng

Jia. 2001. Freeway performance measurement system: mining loop detector data.

Transportation Research Record 1748, 1 (2001), 96–102.

[6] Xu Chen, Yuanxing Zhang, Lun Du, Zheng Fang, Yi Ren, Kaigui Bian, and Kun-

qing Xie. 2020. Tssrgcn: Temporal spectral spatial retrieval graph convolutional

network for traffic flow forecasting. In 2020 IEEE International Conference on
Data Mining (ICDM). IEEE, 954–959.

[7] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Ben-

gio. 2014. On the Properties of Neural Machine Translation: Encoder-Decoder

Approaches. In SSST@EMNLP. 103–111.
[8] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convo-

lutional Neural Networks on Graphs with Fast Localized Spectral Filtering. In

Advances in Neural Information Processing Systems 29: Annual Conference on
Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain.
3837–3845.

[9] Ziquan Fang, Lu Pan, Lu Chen, Yuntao Du, and Yunjun Gao. 2021. MDTP: AMulti-

source Deep Traffic Prediction Framework over Spatio-Temporal Trajectory Data.

Proc. VLDB Endow. 14, 8 (2021), 1289–1297.
[10] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep sparse rectifier

neural networks. In Proceedings of the fourteenth international conference on
artificial intelligence and statistics. JMLR Workshop and Conference Proceedings,

315–323.

[11] Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. 2019.

Attention based spatial-temporal graph convolutional networks for traffic flow

forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence. 922–
929.

[12] Shengnan Guo, Youfang Lin, Huaiyu Wan, Xiucheng Li, and Gao Cong. 2021.

Learning dynamics and heterogeneity of spatial-temporal graph data for traffic

forecasting. IEEE Transactions on Knowledge and Data Engineering (2021).

[13] Liangzhe Han, Bowen Du, Leilei Sun, Yanjie Fu, Yisheng Lv, and Hui Xiong. 2021.

Dynamic and Multi-faceted Spatio-temporal Deep Learning for Traffic Speed

Forecasting. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining. 547–555.

[14] Xiaolin Han, Tobias Grubenmann, Reynold Cheng, Sze Chun Wong, Xiaodong

Li, and Wenya Sun. 2020. Traffic incident detection: A trajectory-based approach.

In 2020 IEEE 36th International Conference on Data Engineering (ICDE). IEEE,
1866–1869.

[15] Hosagrahar V Jagadish, Johannes Gehrke, Alexandros Labrinidis, Yannis Pa-

pakonstantinou, Jignesh M Patel, Raghu Ramakrishnan, and Cyrus Shahabi. 2014.

Big data and its technical challenges. Commun. ACM 57, 7 (2014), 86–94.

[16] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings.

[17] Genshiro Kitagawa and Will Gersch. 1984. A smoothness priors–state space

modeling of time series with trend and seasonality. J. Amer. Statist. Assoc. 79,
386 (1984), 378–389.

[18] S Vasantha Kumar and Lelitha Vanajakshi. 2015. Short-term traffic flow prediction

using seasonal ARIMA model with limited input data. European Transport
Research Review 7, 3 (2015), 1–9.

[19] Hyunwook Lee, Cheonbok Park, Seungmin Jin, Hyeshin Chu, Jaegul Choo,

and Sungahn Ko. 2021. An Empirical Experiment on Deep Learning Models

for Predicting Traffic Data. In 2021 IEEE 37th International Conference on Data
Engineering (ICDE). IEEE, 1817–1822.

[20] Fuxian Li, Jie Feng, Huan Yan, Guangyin Jin, Depeng Jin, and Yong Li. 2021.

Dynamic Graph Convolutional Recurrent Network for Traffic Prediction: Bench-

mark and Solution. arXiv preprint arXiv:2104.14917 (2021).

[21] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2018. Diffusion Convolutional

Recurrent Neural Network: Data-Driven Traffic Forecasting. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings.

[22] Zheng Lu, Chen Zhou, Jing Wu, Hao Jiang, and Songyue Cui. 2016. Integrating

granger causality and vector auto-regression for traffic prediction of large-scale

WLANs. KSII Transactions on Internet and Information Systems (TIIS) 10, 1 (2016),
136–151.

[23] Helmut Lütkepohl. 2005. New introduction to multiple time series analysis.
Springer Science & Business Media.

[24] Yisheng Lv, Yanjie Duan, Wenwen Kang, Zhengxi Li, and Fei-Yue Wang. 2014.

Traffic flow prediction with big data: a deep learning approach. IEEE Transactions
on Intelligent Transportation Systems 16, 2 (2014), 865–873.

[25] Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. 2019. N-

BEATS: Neural basis expansion analysis for interpretable time series forecasting.

In International Conference on Learning Representations.
[26] Zheyi Pan, Yuxuan Liang, Weifeng Wang, Yong Yu, Yu Zheng, and Junbo Zhang.

2019. Urban traffic prediction from spatio-temporal data using deepmeta learning.

In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 1720–1730.

[27] Cheonbok Park, Chunggi Lee, Hyojin Bahng, Yunwon Tae, Seungmin Jin, Kihwan

Kim, Sungahn Ko, and Jaegul Choo. 2020. ST-GRAT: A novel spatio-temporal

graph attention networks for accurately forecasting dynamically changing road

speed. In Proceedings of the 29th ACM International Conference on Information &
Knowledge Management. 1215–1224.

[28] Tangwen Qian, Fei Wang, Yongjun Xu, Yu Jiang, Tao Sun, and Yong Yu. 2020.

CABIN: a novel cooperative attention based location prediction network using

internal-external trajectory dependencies. In International Conference on Artificial
Neural Networks. Springer, 521–532.

[29] Zezhi Shao, Zhao Zhang, FeiWang, and Yongjun Xu. 2022. Pre-training Enhanced

Spatial-temporal Graph Neural Network for Multivariate Time Series Forecasting.

arXiv e-prints (2022), arXiv–2206.
[30] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre

Vandergheynst. 2013. The emerging field of signal processing on graphs: Extend-

ing high-dimensional data analysis to networks and other irregular domains.

IEEE signal processing magazine 30, 3 (2013), 83–98.
[31] Chao Song, Youfang Lin, Shengnan Guo, and Huaiyu Wan. 2020. Spatial-

temporal synchronous graph convolutional networks: A new framework for

spatial-temporal network data forecasting. In Proceedings of the AAAI Conference
on Artificial Intelligence. 914–921.

[32] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence

learning with neural networks. In Advances in neural information processing
systems. 3104–3112.

[33] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence

learning with neural networks. In Advances in neural information processing
systems. 3104–3112.

[34] Luan Tran, Min Y Mun, Matthew Lim, Jonah Yamato, Nathan Huh, and Cyrus

Shahabi. 2020. DeepTRANS: a deep learning system for public bus travel time

estimation using traffic forecasting. Proceedings of the VLDB Endowment 13, 12
(2020), 2957–2960.

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. In Advances in neural information processing systems. 5998–6008.
[36] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings.

[37] Xiaoyang Wang, Yao Ma, Yiqi Wang, Wei Jin, Xin Wang, Jiliang Tang, Caiyan

Jia, and Jian Yu. 2020. Traffic flow prediction via spatial temporal graph neural

network. In Proceedings of The Web Conference 2020. 1082–1092.
[38] Billy M Williams and Lester A Hoel. 2003. Modeling and forecasting vehicular

traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results.

Journal of transportation engineering 129, 6 (2003), 664–672.

[39] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian

Weinberger. 2019. Simplifying graph convolutional networks. In International
conference on machine learning. PMLR, 6861–6871.

[40] ZonghanWu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi

Zhang. 2020. Connecting the dots: Multivariate time series forecasting with

graph neural networks. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 753–763.

[41] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. 2019.

Graph WaveNet for Deep Spatial-Temporal Graph Modeling. In Proceedings of
the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI
2019, Macao, China, August 10-16, 2019. 1907–1913.

[42] Yongjun Xu, Xin Liu, Xin Cao, Changping Huang, Enke Liu, Sen Qian, Xingchen

Liu, Yanjun Wu, Fengliang Dong, Cheng-Wei Qiu, et al. 2021. Artificial intelli-

gence: A powerful paradigm for scientific research. The Innovation 2, 4 (2021).

[43] Huaxiu Yao, Fei Wu, Jintao Ke, Xianfeng Tang, Yitian Jia, Siyu Lu, Pinghua Gong,

Jieping Ye, and Zhenhui Li. 2018. Deep Multi-View Spatial-Temporal Network

for Taxi Demand Prediction. In Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial
Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in
Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018.
2588–2595.

2745

http://arxiv.org/abs/1312.6203


[44] Junchen Ye, Leilei Sun, Bowen Du, Yanjie Fu, and Hui Xiong. 2021. Coupled Layer-

wise Graph Convolution for Transportation Demand Prediction. In Thirty-Fifth
AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on
Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Sympo-
sium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event,
February 2-9, 2021. 4617–4625.

[45] Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2018. Spatio-temporal graph convolu-

tional networks: a deep learning framework for traffic forecasting. In Proceedings
of the 27th International Joint Conference on Artificial Intelligence. 3634–3640.

[46] Fisher Yu and Vladlen Koltun. 2016. Multi-Scale Context Aggregation by Dilated

Convolutions. In 4th International Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings.

[47] Haitao Yuan, Guoliang Li, Zhifeng Bao, and Ling Feng. 2021. An effective

joint prediction model for travel demands and traffic flows. In 2021 IEEE 37th
International Conference on Data Engineering (ICDE). IEEE, 348–359.

[48] Zhuoning Yuan, Xun Zhou, and Tianbao Yang. 2018. Hetero-convlstm: A

deep learning approach to traffic accident prediction on heterogeneous spatio-

temporal data. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 984–992.

[49] Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, and Dit-Yan Yeung.

2018. GaAN: Gated Attention Networks for Learning on Large and Spatiotem-

poral Graphs. In Proceedings of the Thirty-Fourth Conference on Uncertainty in
Artificial Intelligence, UAI 2018, Monterey, California, USA, August 6-10, 2018.
339–349.

[50] Qi Zhang, Jianlong Chang, Gaofeng Meng, Shiming Xiang, and Chunhong Pan.

2020. Spatio-temporal graph structure learning for traffic forecasting. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, Vol. 34. 1177–1185.

[51] Chuanpan Zheng, Xiaoliang Fan, Cheng Wang, and Jianzhong Qi. 2020. Gman: A

graph multi-attention network for traffic prediction. In Proceedings of the AAAI
Conference on Artificial Intelligence. 1234–1241.

[52] Yu Zheng, Licia Capra, Ouri Wolfson, and Hai Yang. 2014. Urban computing:

concepts, methodologies, and applications. ACM Transactions on Intelligent
Systems and Technology (TIST) 5, 3 (2014), 1–55.

[53] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong,

and Wancai Zhang. 2021. Informer: Beyond Efficient Transformer for Long

Sequence Time-Series Forecasting. In Thirty-Fifth AAAI Conference on Artificial
Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of
Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances
in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021. 11106–11115.

2746


