
Pre-training Enhanced Spatial-temporal Graph Neural Network
for Multivariate Time Series Forecasting
Zezhi Shao

Institute of Computing Technology,
Chinese Academy of Sciences

University of Chinese Academy of Sciences
shaozezhi19b@ict.ac.cn

Zhao Zhang
Institute of Computing Technology,

Chinese Academy of Sciences
zhangzhao2021@ict.ac.cn

Fei Wang∗
Institute of Computing Technology,

Chinese Academy of Sciences
wangfei@ict.ac.cn

Yongjun Xu
Institute of Computing Technology,

Chinese Academy of Sciences
xyj@ict.ac.cn

ABSTRACT
Multivariate Time Series (MTS) forecasting plays a vital role in a
wide range of applications. Recently, Spatial-Temporal Graph Neu-
ral Networks (STGNNs) have become increasingly popular MTS
forecasting methods. STGNNs jointly model the spatial and tempo-
ral patterns of MTS through graph neural networks and sequential
models, significantly improving the prediction accuracy. But lim-
ited by model complexity, most STGNNs only consider short-term
historical MTS data, such as data over the past one hour. However,
the patterns of time series and the dependencies between them (i.e.,
the temporal and spatial patterns) need to be analyzed based on
long-term historical MTS data. To address this issue, we propose
a novel framework, in which STGNN is Enhanced by a scalable
time series Pre-training model (STEP). Specifically, we design a
pre-training model to efficiently learn temporal patterns from very
long-term history time series (e.g., the past two weeks) and generate
segment-level representations. These representations provide con-
textual information for short-term time series input to STGNNs and
facilitate modeling dependencies between time series. Experiments
on three public real-world datasets demonstrate that our framework
is capable of significantly enhancing downstream STGNNs, and our
pre-training model aptly captures temporal patterns.

CCS CONCEPTS
• Information systems → Data mining.

KEYWORDS
multivariate time series forecasting, spatial-temporal graph neural
network, pre-training model
ACM Reference Format:
Zezhi Shao, Zhao Zhang, Fei Wang, Yongjun Xu. 2022. Pre-training En-
hanced Spatial-temporal Graph Neural Network for Multivariate Time Se-
ries Forecasting. In Proceedings of the 28th ACM SIGKDD Conference on

∗Corresponding author.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

KDD ’22, August 14–18, 2022, Washington, DC, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9385-0/22/08.
https://doi.org/10.1145/3534678.3539396

(a) Traffic flow over 9 days in PeMS04 datasets.

(b) Similar traffic trend in different context. (c) Different traffic trend between similar series.

Figure 1: Examples of traffic flow multivariate time series
data. (a) The two time series exhibit complex temporal pat-
terns and strong spatial correlations. (b) Similar traffic trends
within small windows in different contexts. (c) Different traf-
fic trends within a small window between two similar series.

Knowledge Discovery and Data Mining (KDD ’22), August 14–18, 2022, Wash-
ington, DC, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3534678.3539396

1 INTRODUCTION
Multivariate time series data is ubiquitous in our lives, from trans-
portation and energy to economics. It contains time series from
multiple interlinked variables. Predicting future trends based on
historical observations is of great value in helping to make better de-
cisions. Thus, multivariate time series forecasting has remained an
enduring research topic in both academia and industry for decades.

Indeed, multivariate time series can be generally formalized as
spatial-temporal graph data [36]. On the one hand, multivariate
time series have complex temporal patterns, e.g., multiple period-
icities. On the other hand, different time series can affect other’s
evolutionary processes because of the underlying interdependen-
cies between variables, which is non-Euclidean and is reasonably
modeled by the graph structure. To illustrate, we take the traffic
flow system as an example, where each sensor corresponds to a
variable. Figure 1(a) depicts the traffic flow time series generated
from two sensors deployed on the road network. Apparently, there

1567

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3534678.3539396
https://doi.org/10.1145/3534678.3539396
https://doi.org/10.1145/3534678.3539396
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3534678.3539396&domain=pdf&date_stamp=2022-08-14

KDD ’22, August 14–18, 2022, Washington, DC, USA Zezhi Shao et al.

are two repeating temporal patterns, i.e., daily and weekly peri-
odicities. The morning/evening peaks occur every day, while the
weekdays and weekends exhibit different patterns. Furthermore,
the two time series share very similar trends because the selected
sensors 20 and 301 are closely connected in the traffic network.
Consequently, accurate time series forecasting depends not only
on the pattern of its temporal dimension but also on its interlinked
time series. Besides, it is worth noting that we made the above
analysis on the basis of observing a sufficiently long time series.

To make accurate predictions, Spatial-Temporal Graph Neural
Networks (STGNNs) have attracted increasing attention recently.
STGNNs combine Graph Neural Networks (GNNs) [18] and se-
quential models. The former is used to deal with the dependencies
between time series, and the latter is used to learn the temporal
patterns. Benefitting from jointly modeling the spatial and tempo-
ral patterns, STGNNs have achieved state-of-the-art performance.
In addition, an increasing number of recent works are further ex-
ploring the joint learning of graph structures and STGNNs since
the dependency graph between time series, which is handcrafted
by prior knowledge, is often biased and incorrect, even missing in
many cases. In short, spatial-temporal graph neural networks have
made significant progress for multivariate time series forecasting
in many real-world applications. However, there is no free lunch.
More powerful models require more complex structures. The com-
putational complexity usually increases linearly or quadratically
with the length of the input time series. Further considering the
number of time series (e.g., hundreds), it is not easy for STGNNs to
scale to very long-term historical time series. In fact, most models
use historical data in a small window to make predictions, e.g., use
the past twelve time steps (one hour) to predict the future twelve
time steps [20, 29, 35, 36, 41]. The inability to explicitly learn from
long-term information brings up some intuitive concerns.

Firstly, the STGNN model is blind to the context information
beyond the window. Considering that time series are usually noisy,
it may be difficult for the model to distinguish short-term time se-
ries in different contexts. For example, when observing data within
two small windows of length twelve shown in Figure 1(b), we find
that the two time series in different contexts are similar. Therefore,
it is difficult for models to make accurate predictions about their
different future trends based on limited historical data. Secondly,
short-term information is unreliable for modeling the dependency
graph, which is represented by the similarity (or correlation) be-
tween time series. As shown in Figure 1(c), the two time series are
not similar when we observe data within the small window, neither
in number nor in trend. On the contrary, long-term historical time
series are beneficial for resisting noise, which facilitates obtaining
more robust and accurate dependencies. Although long-term his-
torical information is beneficial, as mentioned above, it is expensive
for the STGNNs to scale to very long-term historical time series di-
rectly. Furthermore, the optimization of the model can also become
problematic as the length of the input sequence increases.

To address these challenges, we propose a novel framework, in
which STGNN is Enhanced by a scalable time series Pre-training
model (STEP). The pre-training model aims to efficiently learn the
temporal patterns from very long-term historical time series and
generate segment-level representations, which contain rich con-
textual information that is beneficial to address the first challenge.

In addition, the learned representations of these segments (i.e., the
short-term time series) are able to incorporate the information from
the whole long historical time series to calculate the correlation
between time series, thus solving the second challenge, the prob-
lem of missing the dependency graph. Specifically, we design an
efficient unsupervised pre-training model for Time Series based
on TransFormer blocks [33] (TSFormer), which is trained through
the masked autoencoding strategy [13]. TSFormer efficiently cap-
tures information over very long-term historical data over weeks,
and produces segment-level representations that correctly reflect
complex patterns in time series. Second, we design a graph struc-
ture learner based on the representation of TSFormer, which learns
discrete dependency graph and utilizes the 𝑘NN graph computed
based on the representation of TSFormer as a regularization to
guide the joint training of graph structure and STGNN. Notably,
STEP is a general framework that can extend to almost arbitrary
STGNNs. In summary, the main contributions are the following:

• We propose a novel framework for multivariate time se-
ries forecasting, where the STGNN is enhanced by a pre-
training model. Specifically, the pre-training model gener-
ates segment-level representations that contain contextual
information to improve the downstream models.

• We design an efficient unsupervised pre-training model for
time series based on Transformer blocks and train it by the
masked autoencoding strategy. Furthermore, we design a
graph structure learner for learning the dependency graph.

• Experimental results on three real-world datasets show that
our method can significantly enhance the performance of
downstream STGNNs, and our pre-training model aptly cap-
tures temporal patterns.

2 PRELIMINARIES
We first define the concept of multivariate time series, the depen-
dency graph. Then, we define the forecasting problem addressed.

Definition 1. Multivariate Time Series. A multivariate time
series has multiple time-dependent variable, such as observations from
multiple sensors. It can be denoted as a tensor X ∈ R𝑇×𝑁×𝐶 , where
𝑇 is the number of time steps, 𝑁 is the number of variables, e.g., the
sensors, and 𝐶 is the number of channels. We additionaly denote the
data of time series 𝑖 as S𝑖 ∈ R𝑇×𝐶 .

Definition 2. Dependency Graph. Each variable depends not
only on its past values but also on other variables. Such dependencies
are captured by a dependency graph G = (𝑉 , 𝐸), where𝑉 is the set of
|𝑉 | = 𝑁 nodes, and each node corresponds to a variable, e.g., a sensor.
𝐸 is the set of |𝐸 | = 𝑀 edges. The graph can also be denoted as an
adjacent matrix A ∈ R𝑁×𝑁 .

Definition 3. Multivariate Time Series Forecasting. Given
historical signals X ∈ R𝑇ℎ×𝑁×𝐶 from the past 𝑇ℎ time steps, mul-
tivariate time series forecasting aims to predict the values Y ∈
R𝑇𝑓 ×𝑁×𝐶 of the 𝑇𝑓 nearest future time steps.

3 MODEL ARCHITECTURE
As shown in Figure 2, STEP has two stages: the pre-training stage
and the forecasting stage. In the pre-training stage, we design a
masked autoencoding model for Time Series based on TransFormer

1568

Pre-training Enhanced Spatial-temporal Graph Neural Network for Multivariate Time Series Forecasting KDD ’22, August 14–18, 2022, Washington, DC, USA

Si
PSi1 Si2 ⋯

Graph Structure Learning

Spatial-Temporal
Graph Neural Network

A
Hi

P

Si
P

Hi

Ŷ

Si
PSi

P− 2Si1 Si3

Transformer Blocks

Prediction Layer

Decoder

Transformer Blocks

Input Embedding

Learnable Positional Encoding

Encoder

Hi
j

Transformer Blocks

Input Embedding

Learnable Positional Encoding

Encoder

Figure 2: The overview of the proposed STEP framework. Left: the pre-training stage. We split very long-term time series into
segments and feed them into TSFormer, which is trained via the masked autoencoding strategy. Right: the forecasting stage.
We enhance the downstream STGNN based on the segment-level representations of the pre-trained TSFormer.

blocks (TSFormer) to efficiently learn temporal patterns. TSFormer
is capable of learning from the very long-term sequence and gives
segment-level representations that contain rich context information.
In the forecasting stage, we use the pre-trained encoder to provide
context information to enhance the downstream STGNN. Further-
more, based on the representations of the pre-training model, we
further design a discrete and sparse graph learner to deal with the
cases that the pre-defined graph is missing.

3.1 The Pre-training Stage
In this part, we aim at designing an efficient unsupervised pre-
training model for time series. While the pre-training model has
made significant progress in natural language processing [3, 8, 27],
progress in time series lags behind them. First, we would like to dis-
cuss the difference between time series and natural language, which
will motivate the design of TSFormer. We attempt to distinguish
them from the following two perspectives:

(i) Time series information density is lower. As human-
generated signals, each data point in natural language (i.e., a word
in a sentence) has rich semantics and is suitable as the data unit for
model input. On the contrary, isolated data points in time series give
less semantic information. Semantics only arise when we observe
at least segment-level data, such as going up or down. On the other
hand, language models are usually trained by predicting only a few
missing words per sentence. However, masked values in time series
can often be trivially predicted by simple interpolation [39], making
the pre-training model only focuses on low-level information. To
address this problem, a simple strategy that works well is to mask a
very high portion of the model’s input to encourage the learning of
high-level semantics, motivated by recent development in computer

vision [13]. It creates a challenging self-supervised task that forces
the model to obtain holistic understanding of time series.

(ii) Time series require longer sequences to learn the tem-
poral patterns. In natural languages, sequences of hundreds of
lengths have contained rich semantic information. Thus, language
pre-training models usually cut or pad the input sequence to hun-
dreds [3, 8, 27]. However, although time series have relatively more
straightforward semantics than natural languages, they require
longer sequences to learn it. For example, traffic system records
data every five seconds, and if we want to learn the weekly peri-
odicity, we need at least consecutive 2016 time slices. Although
sampling at a lower frequency is a possible solution, it inevitably
loses information. Fortunately, although longer time series will
increase the model complexity, we can alleviate it by stacking fewer
Transformer blocks and fixmodel parameters during the forecasting
stage to reduce computational and memory overhead.

Motivated by the above analyses and recent computer vision
models [9], especiallyMasked AutoEncoder (MAE) [13], we propose
a masked autoencoding model for time series based on Transformer
blocks (i.e., TSFormer). TSFormer reconstructs the original signal
based on the given partial observed signals. We use an asymmetric
design to largely reduce computation: the encoder operates on only
partially visible signals, and the decoder uses a lightweight network
on the full signals. The model is shown in Figure 2(left), and we
will introduce each component in detail next.
Masking. We divide the input sequence S𝑖 from node 𝑖 into 𝑃 non-
overlapping patches of length 𝐿 (Input sequences are obtained over
the original time series through a sliding window of length 𝑃 ∗ 𝐿).
The 𝑗th patch can be denoted as S𝑖

𝑗
∈ R𝐿𝐶 , where 𝐶 is the input

1569

KDD ’22, August 14–18, 2022, Washington, DC, USA Zezhi Shao et al.

channel. We assume 𝐿 is the commonly used length of input time
series of STGNNs. We randomly mask a subset of patches with
masking ratio 𝑟 set to a high number of 75% to create a challeng-
ing self-supervised task. Here, we emphasize that the strategy of
using patches as input units serves multiple purposes. Firstly, seg-
ments (i.e., patches) are more appropriate for explicitly providing
semantics than separate points. Secondly, it facilitates the use of
downstreammodels, as downstream STGNNs take a single segment
as input. Last but not least, it significantly reduces the length of
sequences input to the encoder, and the high masking ratio 𝑟 makes
the encoder more efficient during the pre-training stage.
Encoder.Our encoder is a series of Transformer blocks [33] with an
input embedding layer and a positional encoding layer. The encoder
only operates on unmasked patches. As the semantics of time series
are more straightforward than languages, we use four layers of
Transformer blocks, far less than the depth of Transformer-based
models in computer vision [9, 13] and natural languages [3, 8].
Specifically, the input embedding layer is a linear projection to
transform the unmasked patches into latent space:

U𝑖
𝑗 = W · S𝑖𝑗 + b, (1)

where W ∈ R𝑑×(𝐿𝐶) and b ∈ R𝑑 are learnable parameters, U𝑖
𝑗
∈ R𝑑

are the model input vectors, and 𝑑 is the hidden dimension. For
masked patches, we use a shared learnable mask token to indi-
cate the presence of a missing patch to be predicted. Next, the
positional encoding layer is used to add sequential information.
Notably, the positional encoding operates on all patches, although
the mask tokens are not used in the encoder. Moreover, unlike the
deterministic, sinusoidal embeddings used in MAE [13], we use
learnable positional embeddings. On the one hand, in this work,
learnable embeddings significantly outperform sinusoidal ones for
all datasets. On the other hand, we observe that learned positional
embeddings are crucial in learning time series’ periodic features,
which will be demonstrated in Section 4.3. Finally, we obtain the
latent representations H𝑖

𝑗
∈ R𝑑 through Transformer blocks for all

unmasked patches 𝑗 .
Decoder. The decoder is also a series of Transformer blocks that
reconstruct the latent representations back to a lower semantic
level, i.e., numerical information. The decoder operates on the full
set of patches, including the mask tokens. Unlike MAE [13], we no
longer add positional embeddings here since all patches already
have positional information added in the encoder. Notably, the
decoder is only used during the pre-training stage to perform the
sequence reconstruction task, and can be designed independently
of the encoder. We use only a single layer of Transformer block
for balancing efficiency and effectiveness. Finally, we apply Multi-
Layer Perceptions (MLPs) to make predictions whose number of
output dimensions equals the length of each patch. Specifically,
given the latent representation H𝑖

𝑗
∈ R𝑑 of patch 𝑗 , the decoder

gives the reconstructed sequence Ŝ𝑖
𝑗
∈ R𝐿𝐶 .

Reconstruction target. Our loss function compute mean absolute
error between the original sequence S𝑖

𝑗
and reconstructed sequence

Ŝ𝑖
𝑗
. Kindly note that we only compute loss over the masked patches,

which is in line with other pre-training models [8, 13]. Moreover,
all these operations are computed in parallel for all time series 𝑖 .

In summary, TSFormer is efficient thanks to the high masking
ratio and fewer Transformer blocks. TSFormer is capable of learn-
ing from the very long-term sequence (e.g., weeks) and can be
trained on a single GPU. The encoder generates representations
for the input patches (segments). Furthermore, another notewor-
thy difference from MAE [13] is that we pay more attention to
the representations of the patches. On the one hand, we can use
the representations to verify periodic patterns in the data, which
will be demonstrated in Section 4.3. More importantly, they can
conveniently act as contextual information for short-term input of
downstream STGNNs, which will be introduced in the next.

3.2 The Forecasting Stage
For a given time series 𝑖 , TSFormer takes its historical signals S𝑖 ∈
R𝑇𝑝×𝐶 of the past 𝑇𝑝 = 𝐿 × 𝑃 time steps as input. We divide it
into 𝑃 non-overlapping patches of length 𝐿: S𝑖1, · · · , S

𝑖
𝑃
, where S𝑖

𝑗
∈

R𝐿×𝐶 . The pre-trained TSFormer encoder generates representations
H𝑖
𝑗
∈ R𝑑 for each S𝑖

𝑗
, where 𝑑 is the dimension of hidden states.

Considering that the computational complexity usually increases
linearly or quadratically with the length of the input time series,
STGNNs can only take the latest, i.e., the last patch S𝑖

𝑃
∈ R𝐿×𝐶 for

each time series 𝑖 as input. For example, the most typical setting is
𝐿 = 12. In the forecasting stage, we aim at enhancing the STGNNs
based on the representations of the pre-trained TSFormer encoder.
Graph structure learning. Many STGNNs [20, 36, 41] depend on
a pre-defined graph to indicate the relationship between nodes (i.e.,
time series). However, such a graph is not available or is incomplete
in many cases. An intuitive idea is to train a matrix A ∈ R𝑁×𝑁 ,
where A𝑖 𝑗 ∈ [0, 1] indicates the dependency between time series 𝑖
and 𝑗 . However, since the learning of graph structure and STGNNs
are coupled compactly, and there is no supervised loss information
for graph structure learning [21], optimizing such a contiguous ma-
trix usually leads to a complex bilevel optimization problem [10]. In
addition, the dependency A𝑖 𝑗 is usually measured by the similarity
between time series, which is also a challenging task.

Fortunately, we can alleviate these problems based on the pre-
trained TSFormer. Motivated by recent works [10, 17, 29], we aim to
learn a discrete sparse graph, whereΘ𝑖 𝑗 parameterizes the Bernoulli
distribution from which the discrete dependency graph A is sam-
pled. First, we introduce graph regularization to provide supervised
information for graph optimization based on the representations
of TSFormer. Specifically, we denote H𝑖 = H𝑖

1 ∥ H𝑖
2 ...H

𝑖
𝑃−1 ∥ H𝑖

𝑃
∈

R𝑃𝑑 as the feature of time series 𝑖 , where ∥ means the concatenation
operation. Then we calculate a 𝑘NN graph A𝑎 among all the nodes.
We can control the sparsity of the learned graph by setting differ-
ent 𝑘 . Benefiting from the ability of TSFormer, A𝑎 can reflect the
dependencies between nodes, which is helpful to guide the training
of the graph structure. Then, we compute Θ𝑖 𝑗 as follows:

Θ𝑖 𝑗 = FC(relu(FC(Z𝑖 ∥ Z𝑗)))
Z𝑖 = relu(FC(H𝑖)) + G𝑖 ,

(2)

where Θ𝑖 𝑗 ∈ R2 is the unnormalized probability. The first dimen-
sion indicates the probability of positive, and the second dimen-
sion indicates the probability of negative. G𝑖 is the global feature
of time series 𝑖 , which is obtained by a convolutional network

1570

Pre-training Enhanced Spatial-temporal Graph Neural Network for Multivariate Time Series Forecasting KDD ’22, August 14–18, 2022, Washington, DC, USA

G𝑖 = FC(vec(Conv(S𝑖
𝑡𝑟𝑎𝑖𝑛

))), where S𝑖
𝑡𝑟𝑎𝑖𝑛

∈ R𝐿𝑡𝑟𝑎𝑖𝑛 is the entire
sequence 𝑖 over training dataset, and 𝐿𝑡𝑟𝑎𝑖𝑛 is the length of the train-
ing dataset. S𝑖

𝑡𝑟𝑎𝑖𝑛
is static for all samples during training, helping

to make the training process more robust and accurate. The feature
H𝑖 is dynamic for different training samples to reflect the dynam-
ics of dependency graphs [19]. As such, we use the cross-entropy
between Θ and the 𝑘NN graph𝐴𝑎 as graph structure regularization:

L𝑔𝑟𝑎𝑝ℎ =
∑︁
𝑖 𝑗

−A𝑎
𝑖 𝑗 logΘ

′
𝑖 𝑗 − (1 − A𝑎

𝑖 𝑗) log(1 − Θ
′
𝑖 𝑗), (3)

where Θ
′
𝑖 𝑗

= softmax(Θ𝑖 𝑗) ∈ R is the normalized probability.
The last problem of discrete graph structure learning is that the

sampling operation from Θ to adjacent matrix A is not differen-
tiable. Hence, we apply the Gumbel-Softmax reparametrization
trick proposed by [15, 25]:

A𝑖 𝑗 = softmax((Θ𝑖 𝑗 + g)/𝜏), (4)

where g ∈ R2 is a vector of i.i.d. samples drawn from a Gumbel(0,1)
distribution. 𝜏 is the softmax temperature parameter. The Gumbel-
Softmax converges to one-hot samples (i.e., discrete) when 𝜏 → 0.
Downstream spatial-temporal graph neural network. A nor-
mal downstream STGNN takes the last patch and the dependency
graph as input, while the enhanced STGNN also considers the in-
put patch’s representation. Since the TSFormer has strong power
at extracting very long-term dependencies, the representation H𝑖

𝑃
contains rich context information. STEP framework can extend
to almost any STGNN, and we choose a representative method
as our backend, the Graph WaveNet [36]. Graph WaveNet cap-
tures spatial-temporal dependencies efficiently and effectively by
combining graph convolution with dilated casual convolution. It
makes predictions based on its output latent hidden representations
H𝑔𝑤 ∈ R𝑁×𝑑′

by a regression layer, which is a Multi-Layer Percep-
tion (MLP). For brevity, we omit its details, and interested readers
can refer to the paper [36]. Denoting the representations H𝑖

𝑃
of

TSFormer for all node 𝑖 as H𝑃 ∈ R𝑁×𝑑 , we fuse the representations
of Graph WaveNet and TSFormer by:

H𝑓 𝑖𝑛𝑎𝑙 = SP(H𝑃) + H𝑔𝑤 , (5)

where SP(·) is the semantic projector to transform the H𝑖
𝑃
to the

semantic space of H𝑔𝑤 . We implement it with a MLP. Finally, we
make predictions by the regression layer: Ŷ ∈ R𝑇𝑓 ×𝑁×𝐶 . Given
the ground truthY ∈ R𝑇𝑓 ×𝑁×𝐶 , we use mean absolute error as the
regression loss:

L𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = L(Ŷ,Y) = 1
𝑇𝑓 𝑁𝐶

𝑇𝑓∑︁
𝑗=1

𝑁∑︁
𝑖=1

𝐶∑︁
𝑘=1

|Ŷ𝑖 𝑗𝑘 − Y𝑖 𝑗𝑘 |, (6)

where 𝑁 is the number of nodes, 𝑇𝑓 is the number of forecasting
steps, and 𝐶 is the dimensionality of the output. The downstream
STGNN and the graph structure is trained in an end-to-end manner:

𝐿 = 𝐿𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 + 𝜆𝐿𝑔𝑟𝑎𝑝ℎ . (7)

We set the graph regularization term 𝜆 gradually decay during the
training process to go beyond the 𝑘NN graph. Notably, the pre-
trained TSFormer encoder is fixed in the forecasting stage to reduce
computational and memory overhead.

Table 1: Statistics of datasets.
Dataset # Samples # Node Sample Rate Time Span

METR-LA 34727 207 5mins 4 months
PEMS-BAY 52116 325 5mins 6 months
PEMS04 16969 307 5mins 2 months

4 EXPERIMENTS
In this section, we present experiments on three real-world datasets
to demonstrate the effectiveness of the proposed STEP and TS-
Former. Furthermore, we conduct comprehensive experiments to
evaluate the impact of important hyper-parameters and compo-
nents. More experimental details, such as optimization settings and
efficiency study, can be found in Appendix A, B, and C. It is notable
that we conduct pre-training for each dataset since these datasets
are heterogeneous in terms of length of time series, physical nature,
and temporal patterns. Our code can be found in this repository1.

4.1 Experimental Setup
Datasets. Following previous works [29, 35, 36], we conduct exper-
iments on three commonly used multivariate time series datasets:

• METR-LA is a traffic speed dataset collected from loop-
detectors located on the LA County road network [14]. It
contains data of 207 selected sensors over a period of 4
months from Mar to Jun in 2012 [20]. The traffic informa-
tion is recorded at the rate of every 5 minutes, and the total
number of time slices is 34,272.

• PEMS-BAY is a traffic speed dataset collected from Califor-
nia Transportation Agencies (CalTrans) Performance Mea-
surement System (PeMS) [5]. It contains data of 325 sensors
in the Bay Area over a period of 6 months from Jan 1st 2017
to May 31th 2017 [20]. The traffic information is recorded
at the rate of every 5 minutes, and the total number of time
slices is 52,116.

• PEMS04 is a traffic flow dataset also collected from CalTrans
PeMS [5]. It contains data of 307 sensors in the Bay Area over
a period of 2 months from Jan 1st 2018 to Feb 28th 2018 [11].
The traffic information is recorded at the rate of every 5
minutes, and the total number of time slices is 16,992.

The statistical information is summarized in Table 1. For a fair
comparison, we follow the dataset division in previous works. For
METR-LA and PEMS-BAY, we use about 70% of data for training,
20% of data for testing, and the remaining 10% for validation [20, 36].
For PEMS04, we use about 60% of data for training, 20% of data for
testing, and the remaining 20% for validation [11, 12].
Baselines. We select a wealth of baselines that have official public
code. Historical Average (HA), VAR [23], and SVR [30] are tradi-
tional methods. FC-LSTM [32], DCRNN [20], Graph WaveNet [36],
ASTGCN [11], and STSGCN [31] are typical deep learning methods.
GMAN [41], MTGNN [35], and GTS [29] are recent state-of-the-art
works. More details of baselines can be found in Appendix A.1.
Metrics. We evaluate the performances of all baselines by three
commonly used metrics in multivariate time series forecasting,
including Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE) and Mean Absolute Percentage Error (MAPE).

1https://github.com/zezhishao/STEP

1571

https://github.com/zezhishao/STEP

KDD ’22, August 14–18, 2022, Washington, DC, USA Zezhi Shao et al.

Implementation. We set patch size 𝐿 to 12. We set the number of
patches 𝑃 to 168 for METR-LA and PEMS-BAY, and 336 for PEMS04,
i.e., we use historical information for a week for METR-LA and
PEMS-BAY, and two weeks for PEMS04. We aim at forecasting the
next 12 time steps. The masking ratio 𝑟 is set to 75%. The hidden
dimension of the latent representations of TSFormer 𝑑 is set to 96.
The TSFormer encoder uses 4 layer of Transformer blocks, and the
decoder uses 1 layer. The number of attention heads in Transformer
blocks is set to 4. The hyper-parameter of Graph WaveNet is set to
default in their papers [36]. For the 𝑘NN graph A𝑎 , we set 𝑘 to 10.
We perform significance tests (t-test with p-value < 0.05) over all
the experimental results.

4.2 Main Results
As shown in Table 2, our STEP framework consistently achieves the
best performance in almost all horizons in all datasets, indicating
the effectiveness of our framework. GTS and MTGNN jointly learn
the graph structure among multiple time series and the spatial-
temporal graph neural networks. GTS extends DCRNN by intro-
ducing a neighborhood graph as a regularization to improve graph
quality and reformulates the problem as a unilevel optimization
problem. MTGNN replaces the GNN and Gated TCN in Graph
WaveNet with mix-hop propagation layer [1] and dilated inception
layer, and proposes to learn latent adjacency matrix to seek fur-
ther improvement. However, they can not consistently outperform
other baselines. Kindly note that the results of GTS may have some
gaps with the original paper because it calculates the evaluation
metrics in a slightly different manner. Some details can be found
in the appendix in the original paper [29] and similar issues in
its official code repository2. We unify the evaluation process with
other baselines, run GTS five times, and report its best performance.
GMAN performs better in long-term prediction benefiting from the
powerful ability of the attention mechanism in capturing long-term
dependency. DCRNN and Graph WaveNet are two typical spatial-
temporal graph neural networks. Even compared with many newer
works such as ASTGCN and STSGCN, their performance is still
very promising. This may be due to their refined and reasonable
model architecture. FC-LSTM, a classic recurrent neural network,
can not perform well since it only considers temporal features,
ignoring the dependencies between time series. Other non-deep
learning methods HA, VAR, and SVR perform worst since they have
strong assumptions about the data, e.g., stationary or linear. Thus,
they can not capture the strong nonlinear and dynamic spatial and
temporal correlations in real-world datasets.

In a nutshell, STEP provides stable performance gains for Graph
WaveNet by fully exploiting representations extracted by TSFormer
from very long-term historical time series. However, despite the
significant performance improvements, it is difficult for us to intu-
itively understand what TSFormer has learned and how it can help
STGNNs. In the next subsection, we will inspect the TSFormer and
demonstrate the learned multiple periodicities temporal pattern.

4.3 Inspecting The TSFormer
In this subsection, we would like to intuitively explore what TS-
Former has learned.We conduct experiments on the PEMS04 dataset.
2https://github.com/chaoshangcs/GTS/issues

(c) (d)

(a) (b)

Small

Figure 3: Inspecting the TSFormer. (a) Learned temporal peri-
odicity. (b) Reconstruction. (c) Similarity of latent represen-
tations among different patches. (d) Similarity of positional
embeddings among different patches.

Specifically, we randomly select a time series in the PEMS04 and
then randomly choose a sample of the test dataset to analyze TS-
Former. Note that each input sample in PEMS04 has 336 patches of
length 12, which means it covers data of the past two weeks.
Learned temporal pattern. Firstly, we would like to explore
whether TSFormer learned temporal patterns. We expect it to gen-
erate meaningful representations and be able to solve the problem
in Figure 1(b). Therefore, we randomly select a patch, compute the
cosine similarity with the representations of all the other patches,
and select the most similar 3 patches. The result is shown in Figure
3(a), where the original patch is in the black circle, and the selected
most similar patches are in the red circle. Apparently, TSFormer has
a strong ability to identify similar patches. Furthermore, in order
to get the bigger picture, we also calculate the pairwise similarity
between all patches and get a 336 × 336 heat map, where element
in 𝑖-th column and 𝑗-th row indicates the cosine similarity between
patch 𝑖 and patch 𝑗 . The result shown in Figure 3(c) presents clear
daily and weekly periodicities. For each patch, it is similar to the
patch at the same time of a day, and the most similar patch usually
falls on the same time of the week on the same day. The observation
is in line with human intuition. The blue columns or rows mean that
the sensor is down or has a large noise fluctuation at this moment,
which makes it different from other patches. Since TSFormer has
learned the correct relationship between patches, it is reasonable
that it can significantly enhance the downstream STGNNs.
Reconstruction visualization. Additionally, we also visualized
the results of the TSFormer reconstruction, which is shown in
Figure 3(b), where the grey line presents masked patches and the
red line demonstrates the reconstruction. The results show that
TSFormer can effectively reconstruct masked patches based on a
small number of unmasked patches (blue line).
Positional embeddings. Another important difference between
TSFormer and MAE [13] and the original Transformer [33] is the

1572

https://github.com/chaoshangcs/GTS/issues

Pre-training Enhanced Spatial-temporal Graph Neural Network for Multivariate Time Series Forecasting KDD ’22, August 14–18, 2022, Washington, DC, USA

Table 2: Multivariate time series forecasting on the METR-LA, PEMS-BAY, and PEMS04 datasets. Numbers marked with ∗

indicate that the improvement is statistically significant compared with the best baseline (t-test with p-value< 0.05).

Datasets Methods Horizon 3 Horizon 6 Horizon 12

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

METR-LA

HA 4.79 10.00 11.70% 5.47 11.45 13.50% 6.99 13.89 17.54%
VAR 4.42 7.80 13.00% 5.41 9.13 12.70% 6.52 10.11 15.80%
SVR 3.39 8.45 9.30% 5.05 10.87 12.10% 6.72 13.76 16.70%

FC-LSTM 3.44 6.30 9.60% 3.77 7.23 10.09% 4.37 8.69 14.00%
DCRNN 2.77 5.38 7.30% 3.15 6.45 8.80% 3.60 7.60 10.50%
STGCN 2.88 5.74 7.62% 3.47 7.24 9.57% 4.59 9.40 12.70%

Graph WaveNet 2.69 5.15 6.90% 3.07 6.22 8.37% 3.53 7.37 10.01%
ASTGCN 4.86 9.27 9.21% 5.43 10.61 10.13% 6.51 12.52 11.64%
STSGCN 3.31 7.62 8.06% 4.13 9.77 10.29% 5.06 11.66 12.91%
GMAN 2.80 5.55 7.41% 3.12 6.49 8.73% 3.44 7.35 10.07%
MTGNN 2.69 5.18 6.88% 3.05 6.17 8.19% 3.49 7.23 9.87%
GTS 2.67 5.27 7.21% 3.04 6.25 8.41% 3.46 7.31 9.98%

STEP 2.61∗ 4.98∗ 6.60%∗ 2.96∗ 5.97∗ 7.96%∗ 3.37∗ 6.99∗ 9.61%∗

PEMS-BAY

HA 1.89 4.30 4.16% 2.50 5.82 5.62% 3.31 7.54 7.65%
VAR 1.74 3.16 3.60% 2.32 4.25 5.00% 2.93 5.44 6.50%
SVR 1.85 3.59 3.80% 2.48 5.18 5.50% 3.28 7.08 8.00%

FC-LSTM 2.05 4.19 4.80% 2.20 4.55 5.20% 2.37 4.96 5.70%
DCRNN 1.38 2.95 2.90% 1.74 3.97 3.90% 2.07 4.74 4.90%
STGCN 1.36 2.96 2.90% 1.81 4.27 4.17% 2.49 5.69 5.79%

Graph WaveNet 1.30 2.74 2.73% 1.63 3.70 3.67% 1.95 4.52 4.63%
ASTGCN 1.52 3.13 3.22% 2.01 4.27 4.48% 2.61 5.42 6.00%
STSGCN 1.44 3.01 3.04% 1.83 4.18 4.17% 2.26 5.21 5.40%
GMAN 1.34 2.91 2.86% 1.63 3.76 3.68% 1.86 4.32 4.37%
MTGNN 1.32 2.79 2.77% 1.65 3.74 3.69% 1.94 4.49 4.53%
GTS 1.34 2.83 2.82% 1.66 3.78 3.77% 1.95 4.43 4.58%

STEP 1.26∗ 2.73∗ 2.59%∗ 1.55∗ 3.58∗ 3.43%∗ 1.79∗ 4.20∗ 4.18%∗

PEMS04

HA 28.92 42.69 20.31% 33.73 49.37 24.01% 46.97 67.43 35.11%
VAR 21.94 34.30 16.42% 23.72 36.58 18.02% 26.76 40.28 20.94%
SVR 22.52 35.30 14.71% 27.63 42.23 18.29% 37.86 56.01 26.72%

FC-LSTM 21.42 33.37 15.32% 25.83 39.10 20.35% 36.41 50.73 29.92%
DCRNN 20.34 31.94 13.65% 23.21 36.15 15.70% 29.24 44.81 20.09%
STGCN 19.35 30.76 12.81% 21.85 34.43 14.13% 26.97 41.11 16.84%

Graph WaveNet 18.15 29.24 12.27% 19.12 30.62 13.28% 20.69 33.02 14.11%
ASTGCN 20.15 31.43 14.03% 22.09 34.34 15.47% 26.03 40.02 19.17%
STSGCN 19.41 30.69 12.82% 21.83 34.33 14.54% 26.27 40.11 14.71%
GMAN 18.28 29.32 12.35% 18.75 30.77 12.96% 19.95 30.21 12.97%
MTGNN 18.22 30.13 12.47% 19.27 32.21 13.09% 20.93 34.49 14.02%
GTS 18.97 29.83 13.06% 19.29 30.85 13.92% 21.04 34.81 14.94%

STEP 17.34∗ 28.44∗ 11.57%∗ 18.12∗ 29.81∗ 12.00%∗ 19.27∗ 31.33 12.78%∗

learnable positional embedding. Therefore, we would like to explore
whether TSFormer has learned reasonable positional embeddings.
We compute the cosine similarity between the positional embed-
dings of 336 patches and get a 336× 336 heat map, shown in Figure
3(d). We find that the positional embedding of TSFormer better
reflects the multi-periodicity in time series. This is because, unlike
the representation of the encoder, which needs to depend on the
input patches, the positional embeddings are completely free to
optimize and are less affected by the noise of the input data. We

conjecture that such positional embedding is the key factor for the
success of TSFormer since we found that TSFormer could not get
meaningful representations if we replace the learnable positional
embeddings with the deterministic, sinusoidal ones.

4.4 Ablation Study
In this part, we conduct experiment to verify the impact of some
key components. First, we set STEP w/o GSL to test the perfor-
mance without the graph structure learning model. Second, we

1573

KDD ’22, August 14–18, 2022, Washington, DC, USA Zezhi Shao et al.

(b) Impact of masking ratio .r

(c) Impact of of NN graph.k k

(a) Impact of important components.

Figure 4: Ablation study and hyper-parameter study.

set STEP w/o reg to replace the 𝑘NN graph computed by the repre-
sentations of TSFormer with the 𝑘NN graph in GTS [29], which is
computed based on the cosine similarity of raw time series S𝑖

𝑡𝑟𝑎𝑖𝑛
,

to test the superiority of the long sequence representations of TS-
Former. Finally, we also test more downstream STGNNs to verify
the generality of STEP. We choose DCRNN as another backend,
i.e., STEP-DCRNN. Additionally, we also present the performance
of DCRNN for comparison. The results are shown in Figure 4(a).

As can be seen from the figure, STEP outperforms STEP w/o GSL,
which shows that our graph structure learning module consistently
plays a positive role. Meanwhile, STEPw/o GSL still achieves satisfac-
tory performance, demonstrating that segment-level representation
plays a vital role. STEP also outperforms STEP w/o reg, showing
that the long sequence representations of TSFormer is superior in
improving the graph quality. In addition, as mentioned in Section 1,
DCRNN represents a large class of STGNNs [21, 26, 29, 41] that are
based on the seq2seq [32] architecture. We fuse the representation
of TSFormer to the latent representations of the seq2seq encoder
according to Eq.(5). We can see that STEP significantly enhances
the performance of DCRNN, which verifies the generality of STEP.

4.5 Hyper-parameter Study
We conduct experiments to analyze the impacts of two hyper-
parameters: the masking ratio 𝑟 , the 𝑘 of the 𝑘NN graph in graph
structure learning. We present the results on METR-LA dataset.

The effect of 𝑟 and 𝑘 are shown in Figure 4(b) and Figure 4(c),
respectively. We find there exist optimal values for both 𝑟 and 𝑘 . For
masking ratio 𝑟 , when 𝑟 is small, masked values in time series can be
predicted by simple average or interpolation. Thus it creates a trivial

self-supervised learning task and can not get useful representations.
When 𝑟 is large, the model would lose too much information and
fail to learn temporal patterns. For 𝑘 of the 𝑘NN graph in graph
structure learning, a small value of 𝑘 would make the learned graph
incomplete and lose dependency information, thus the performance
is worse. A large value of 𝑘 would introduce redundancies, which
may hurt the information aggregation of graph neural networks,
leading to unsatisfactory performance.

5 RELATEDWORK
5.1 Spatial-Temporal Graph Neural Networks
The accuracy ofmultivariate time series forecasting has been largely
improved by artificial intelligence [37], especially deep learning
techniques. Among these techniques, Spatial-Temporal Graph Neu-
ral Networks (STGNNs) are the most promising methods, which
combine Graph Neural Networks (GNNs) [7, 18] and sequential
models [6, 32] to model the spatial and temporal dependency jointly.
GraphWaveNet [36], MTGNN [35], STGCN [38], and StemGNN [4]
combine graph convolutional networks and gated temporal con-
volutional networks with their variants. These methods are based
on convolution operation, which facilitates parallel computation.
DCRNN [20], ST-MetaNet [26], AGCRN [2], and TGCN [40] com-
bine diffusion convolutional networks and recurrent neural net-
works [6, 32] with their variants. They follow the seq2seq [32]
architecture to predict step by step. Moreover, attention mecha-
nism is widely used in many methods, such as GMAN [41] and
ASTGCN [11]. Although STGNNs have made significant progress,
the complexity of STGNNs is high because it needs to deal with
both temporal and spatial dependency at every step. Therefore,
STGNNs can only take short-term historical time series as input,
such as the past 1 hour (twelve time steps in many datasets).

More recently, an increasing number of works [10, 17, 29] have
focused on joint learning of graph structures and graph neural
networks to model the dependencies between nodes. LDS [10]
models the edges as random variables whose parameters are treated
as hyperparameters in a bilevel learning framework. The random
variables parameterize the element-wise Bernoulli distribution from
which the adjacency matrix A is sampled. GTS [29] introduces a
neighborhood graph as a regularization that improves graph quality
and reformulates the problem as a unilevel optimization problem.
Notably, We follow the framework of GTS but enhance it by the pre-
training model since TSFormer gives better latent representations
of time series for calculating their correlations.

5.2 Pre-training Model
The pre-training model is used to learn a good representation from
massive unlabeled data and then use these representations for other
downstream tasks. Recent studies have demonstrated significant
performance gains on many natural language processing tasks
with the help of the representation extracted from pre-training
models [28]. Prominent examples are the BERT [8] and GPT [3],
which are based on the Transformer encoder and decoder, respec-
tively. The Transformer architecture is more powerful and more
efficient than LSTM architecture [27, 32] and has become the main-
stream approach for designing pre-training models. More recently,
Transformer for images has attracted increasing attention because

1574

Pre-training Enhanced Spatial-temporal Graph Neural Network for Multivariate Time Series Forecasting KDD ’22, August 14–18, 2022, Washington, DC, USA

of its powerful performance. ViT [9] proposes to split an image
into patches and provide the sequence of linear embeddings of
these patches as an input to a Transformer, showing impressive
performance. However, ViT needs supervised training, which re-
quires massive labeled data. On the contrary, MAE [13] uses self-
supervised learning based on the masked autoencoding strategy.
MAE enables us to train large models efficiently and effectively and
outperforms supervised pre-training. Although the pre-training
model has made significant progress in natural language processing
and computer vision, progress in time series lags behind them. In
this paper, we propose a pre-training model (named TSFormer) for
time series based on Transformer blocks and improve the perfor-
mance of the downstream forecasting task.

6 CONCLUSION
In this paper, we propose a novel STEP framework for multivariate
time series forecasting to address the inability of STGNNs to learn
long-term information. The downstream STGNN is enhanced by a
scalable time series pre-training model TSFormer. TSFormer is capa-
ble of efficiently learning the temporal pattern from very long-term
historical time series and generating segment-level representations,
which provide rich contextual information for short-term input of
STGNNs and facilitate modeling dependencies between time se-
ries. Extensive experiments on three real-world datasets show the
superiority of the STEP framework and the proposed TSFormer.

ACKNOWLEDGMENTS
This work is partially supported by NSFC No. 61902376 and No.
61902382. In addition, Zhao Zhang is supported by the China Post-
doctoral Science Foundation under Grant No. 2021M703273.

REFERENCES
[1] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina

Lerman, Hrayr Harutyunyan, Greg Ver Steeg, and Aram Galstyan. 2019. MixHop:
Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood
Mixing. In ICML.

[2] Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. 2020. Adaptive Graph
Convolutional Recurrent Network for Traffic Forecasting. In NeurIPS.

[3] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language Models are Few-Shot Learners. In NeurIPS.

[4] Defu Cao, Yujing Wang, Juanyong Duan, Ce Zhang, Xia Zhu, Congrui Huang,
Yunhai Tong, Bixiong Xu, Jing Bai, Jie Tong, and Qi Zhang. 2020. Spectral
Temporal Graph Neural Network for Multivariate Time-series Forecasting. In
NeurIPS.

[5] Chao Chen, Karl Petty, Alexander Skabardonis, Pravin Varaiya, and Zhanfeng
Jia. 2001. Freeway performance measurement system: mining loop detector data.
Transportation Research Record (2001).

[6] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Ben-
gio. 2014. On the Properties of Neural Machine Translation: Encoder-Decoder
Approaches. In SSST@EMNLP.

[7] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convo-
lutional Neural Networks on Graphs with Fast Localized Spectral Filtering. In
NeurIPS.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
NAACL.

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2021. An Image is
Worth 16x16 Words: Transformers for Image Recognition at Scale. In ICLR.

[10] Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. 2019. Learn-
ing Discrete Structures for Graph Neural Networks. In ICML.

[11] Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. 2019.
Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic

Flow Forecasting. In AAAI.
[12] Shengnan Guo, Youfang Lin, Huaiyu Wan, Xiucheng Li, and Gao Cong. 2021.

Learning dynamics and heterogeneity of spatial-temporal graph data for traffic
forecasting. TKDE (2021).

[13] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Gir-
shick. 2021. Masked autoencoders are scalable vision learners. arXiv preprint
arXiv:2111.06377 (2021).

[14] Hosagrahar V Jagadish, Johannes Gehrke, Alexandros Labrinidis, Yannis Pa-
pakonstantinou, Jignesh M Patel, Raghu Ramakrishnan, and Cyrus Shahabi. 2014.
Big data and its technical challenges. Commun. ACM (2014).

[15] Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categorical Reparameterization
with Gumbel-Softmax. In ICLR.

[16] Diederik P Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In ICLR.

[17] Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel.
2018. Neural relational inference for interacting systems. In ICML.

[18] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR.

[19] Fuxian Li, Jie Feng, Huan Yan, Guangyin Jin, Depeng Jin, and Yong Li. 2021. Dy-
namic Graph Convolutional Recurrent Network for Traffic Prediction: Benchmark
and Solution. CoRR (2021). arXiv:2104.14917

[20] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2018. Diffusion Convolutional
Recurrent Neural Network: Data-Driven Traffic Forecasting. In ICLR.

[21] Haozhe Lin, Yushun Fan, Jia Zhang, and Bing Bai. 2021. REST: Reciprocal Frame-
work for Spatiotemporal-coupled Predictions. In TheWebConference.

[22] Ilya Loshchilov and Frank Hutter. 2018. Decoupled Weight Decay Regularization.
In ICLR.

[23] Zheng Lu, Chen Zhou, Jing Wu, Hao Jiang, and Songyue Cui. 2016. Integrating
Granger Causality and Vector Auto-Regression for Traffic Prediction of Large-
Scale WLANs. KSII Trans. Internet Inf. Syst. (2016).

[24] Helmut Lütkepohl. 2005. New introduction tomultiple time series analysis. Springer
Science & Business Media.

[25] Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. 2017. The Concrete Distri-
bution: A Continuous Relaxation of Discrete Random Variables. In ICLR.

[26] Zheyi Pan, Yuxuan Liang, Weifeng Wang, Yong Yu, Yu Zheng, and Junbo Zhang.
2019. Urban traffic prediction from spatio-temporal data using deepmeta learning.
In SIGKDD. 1720–1730.

[27] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word
representations. In NAACL.

[28] Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing Huang.
2020. Pre-trained models for natural language processing: A survey. Science
China Technological Sciences (2020).

[29] Chao Shang, Jie Chen, and Jinbo Bi. 2021. Discrete Graph Structure Learning for
Forecasting Multiple Time Series. In ICLR.

[30] Alexander J. Smola and Bernhard Schölkopf. 2004. A tutorial on support vector
regression. Stat. Comput. (2004).

[31] Chao Song, Youfang Lin, Shengnan Guo, and HuaiyuWan. 2020. Spatial-Temporal
Synchronous Graph Convolutional Networks: A New Framework for Spatial-
Temporal Network Data Forecasting. In AAAI.

[32] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence
Learning with Neural Networks. In NeurIPS.

[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In NeurIPS.

[34] Xiaoyang Wang, Yao Ma, Yiqi Wang, Wei Jin, Xin Wang, Jiliang Tang, Caiyan Jia,
and Jian Yu. 2020. Traffic Flow Prediction via Spatial Temporal Graph Neural
Network. InWWW.

[35] ZonghanWu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi
Zhang. 2020. Connecting the Dots: Multivariate Time Series Forecasting with
Graph Neural Networks. In SIGKDD.

[36] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. 2019.
Graph WaveNet for Deep Spatial-Temporal Graph Modeling. In IJCAI.

[37] Yongjun Xu, Xin Liu, Xin Cao, Changping Huang, Enke Liu, Sen Qian, Xingchen
Liu, Yanjun Wu, Fengliang Dong, Cheng-Wei Qiu, et al. 2021. Artificial intelli-
gence: A powerful paradigm for scientific research. The Innovation 2, 4 (2021).

[38] Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2018. Spatio-Temporal Graph Con-
volutional Networks: A Deep Learning Framework for Traffic Forecasting. In
IJCAI.

[39] George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty,
and Carsten Eickhoff. 2021. A Transformer-based Framework for Multivariate
Time Series Representation Learning. In SIGKDD.

[40] Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and
Haifeng Li. 2020. T-GCN: A Temporal Graph Convolutional Network for Traffic
Prediction. IEEE TITS (2020).

[41] Chuanpan Zheng, Xiaoliang Fan, Cheng Wang, and Jianzhong Qi. 2020. GMAN:
A Graph Multi-Attention Network for Traffic Prediction. In AAAI.

1575

https://arxiv.org/abs/2104.14917

KDD ’22, August 14–18, 2022, Washington, DC, USA Zezhi Shao et al.

A MORE EXPERIMENTS DETAILS
A.1 Baseline Details

• HA: Historical Average model, which models time series as
a periodic process and uses weighted averages from previous
periods as predictions for future periods.

• VAR: Vector Auto-Regression [23, 24] assumes that the past
time series is stationary and estimates the relationship be-
tween the time series and their lag value. [34]

• SVR: Support Vector Regression (SVR) uses linear support
vector machine for classical time series regression task.

• FC-LSTM [32]: Long Short-Term Memory network with
fully connected hidden units is a well-known network archi-
tecture that is powerful in capturing sequential dependency.

• DCRNN [20]: Diffusion Convolutional Recurrent Neural
Network [20] replaces the fully connected layer in GRU [6]
by diffusion convolutional layer to form a new Diffusion
Convolutional Gated Recurrent Unit (DCGRU).

• Graph WaveNet [36]: Graph WaveNet stacks gated tem-
poral convolutional layer and GCN layer by layer to jointly
capture the spatial and temporal dependencies.

• ASTGCN [11]: ASTGCN combines the spatial-temporal at-
tention mechanism to capture the dynamic spatial-temporal
characteristics simultaneously.

• STSGCN [31]: STSGCN is proposed to effectively capture
the localized spatial-temporal correlations and consider the
heterogeneity in spatial-temporal data.

• MTGNN [35]: MTGNN extends Graph WaveNet through
the mix-hop propagation layer in the spatial module, the
dilated inception layer in the temporal module, and a more
delicate graph learning layer.

• GMAN [41]: GMAN is an attention-based model which
stacks spatial, temporal and transform attentions.

• GTS [29]: GTS learns a graph structure among multiple time
series and forecasts them simultaneously with DCRNN.

A.2 Optimization Settings

Table 3: Pre-training setting.

config value
optimizer AdamW [22]
base learning rate 5.0e-4
weight decay 0
epsilon 1.0e-8
optimizer momentum 𝛽1, 𝛽2 = 0.9, 0.95
learning rate schedule MultiStepLR
milestones 50
gamma 0.5
gradient clip 5

Pre-training stage. The default setting is shown in Table 3. We
use uniform distribution to initialize the positional embeddings,
and we use truncated normal distribution with 𝜇 = 0 and 𝜎 = 0.02
to initialize the mask token, similar to MAE [13]. We use PyTorch
official implementation to implement the Transformer blocks. We

use the linear scaling rule for learning rate and batch size: lr =
base_lr × (batch_size/8) for all datasets in the pre-training stage.

Table 4: Forecasting setting.

config value
optimizer Adam [16]
learning rate 0.001/0.005/0.002

(PEMS-BAY/METR-LA/PEMS04)
batch size 64/64/32

(PEMS-BAY/METR-LA/PEMS04)
weight decay 1.0e-5
epsilon 1.0e-8
learning rate schedule MultiStepLR
milestones [1, 18, 36, 54, 72]
gamma 0.5
gradient clip 5
cl_num 3
warm_num 30

Forecasting stage. All the settings are shown in Table 4. Following
many recent works, such as MTGNN [35] and GTS [29], we use the
curriculum learning strategy for the forecasting task. The strategy
gradually increases the prediction length of the model with the
increase in iteration number. We increase the prediction length
by one per cl_num epochs. Moreover, we additionally perform
a warm-up of warm_num epochs to better initialize the model
for curriculum learning. In addition, 𝜆 in Equation (7) decays by
𝜆 = 1/(⌈𝑒𝑝𝑜𝑐ℎ/6⌉), where ⌈·⌉ means ceiling function and epoch is
the epoch number.

20% 40% 50% 60% 75% 80% 90%
Model

0
100
200
300
400
500
600
700
800
900

1000

Sp
ee

d(
s/

ep
oc

h)

738.6

581.3
491.1 447.7

341.5 312.9 279.3

Figure 5: Training speed of different masking ratio 𝑟 .

B EFFICIENCY
In this part, we compare the efficiency of STEP with other models
and their own variants based on the METR-LA dataset. For a more
intuitive and effective comparison, we compare the average training
time required for each epoch. All the experiments are running on an
Intel(R) Xeon(R) Gold 5217 CPU @ 3.00GHz, 128G RAM computing
server, equipped with RTX 3090 graphics cards. First, we compare

1576

Pre-training Enhanced Spatial-temporal Graph Neural Network for Multivariate Time Series Forecasting KDD ’22, August 14–18, 2022, Washington, DC, USA

STEP
 w/o GSL

STEP
 w/o preprocssing

STEP

Model

0

100

200

300

400

500

600

Sp
ee

d(
s/

ep
oc

h)

181.3

494.3

236.3

Figure 6: Training speed of different methods.

the efficiency of TSFormer in the pre-training stage under different
masking ratios. The result is shown in Figure 5. As the masking
ratio increases, the TSFormer will be more efficient. In summary,
thanks to the high masking ratio and fewer Transformer blocks in
the encoder and decoder, the TSFormer is lightweight and can be
trained efficiently on a single NVIDIA 3090 GPU.

Second, we compare the efficiency of STEP framework in the
forecasting stage with its variants. Recalling that the parameter of
TSFormer is fixed during the forecasting stage, we can use TSFormer
to provide off-the-shelf representations by preprocessing the whole
dataset to reduce redundant calculations in the training process.
We also test the efficiency of STEP without preprocessing, denoting
the variant as STEP w/o pre. In addition, we test the efficiency of
STEP without graph structure learning, i.e., STEP w/o GSL. The
result is shown in Figure 6. We have the following findings: (i) the
graph structure learning module accounts for about 55s per epoch
on average. (ii) preprocessing does significantly reduce repetitive
computations.

C VISUALIZATION
In order to further intuitively understand and evaluate our model,
in this section, we give more visualizations. First, we provide more
visualizations about reconstructions of the TSFormer on PEMS04
dataset like Figure 3(b). The results are shown in Figure 7. Note
that due to space limitation, we only visualize time series in a small
window rather than the whole input time series S𝑖 . Surprisingly,
we find that even given very limited information surrounding the
unmasked patches, TSFormer reconstructs the masked patches
accurately. These results again indicate that our model has a strong
ability to learn rich temporal patterns from very long-term time
series. Then, we visualize the prediction of our model and the
groundtruth data based onMETR-LA dataset.We randomly selected
six time series and displayed their data from June 13th 2012 to June
16th 2012 (located the test dataset). The forecasting results on six
randomly selected time series are shown in Figure 8.We can see that
our model can accurately make predictions for different time series.
Furthermore, we find that the model has the ability to resist noise.
For example, in the right top figure, the traffic sensor apparently

failed in the afternoon of June 13th, 2012. However, the model does
not overfit the noise.

Figure 7: Reconstruction visualizations.

Figure 8: Forecasting visualizations.

1577

	Abstract
	1 Introduction
	2 Preliminaries
	3 Model Architecture
	3.1 The Pre-training Stage
	3.2 The Forecasting Stage

	4 Experiments
	4.1 Experimental Setup
	4.2 Main Results
	4.3 Inspecting The TSFormer
	4.4 Ablation Study
	4.5 Hyper-parameter Study

	5 Related Work
	5.1 Spatial-Temporal Graph Neural Networks
	5.2 Pre-training Model

	6 Conclusion
	Acknowledgments
	References
	A More Experiments Details
	A.1 Baseline Details
	A.2 Optimization Settings

	B Efficiency
	C Visualization

