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ABSTRACT

Multivariate Time Series (MTS) forecasting plays a vital role in a
wide range of applications. Recently, Spatial-Temporal Graph Neu-
ral Networks (STGNNs) have become increasingly popular MTS
forecasting methods due to their state-of-the-art performance. How-
ever, recent works are becoming more sophisticated with limited
performance improvements. This phenomenon motivates us to ex-
plore the critical factors of MTS forecasting and design a model
that is as powerful as STGNNSs, but more concise and efficient. In
this paper, we identify the indistinguishability of samples in both
spatial and temporal dimensions as a key bottleneck, and propose
a simple yet effective baseline for MTS forecasting by attaching
Spatial and Temporal IDentity information (STID), which achieves
the best performance and efficiency simultaneously based on sim-
ple Multi-Layer Perceptrons (MLPs). These results suggest that we
can design efficient and effective models as long as they solve the
indistinguishability of samples, without being limited to STGNNs.
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1 INTRODUCTION

Multivariate time series (MTS) data is a typical spatial-temporal
data, which contains multiple interrelated time series. Accurate and
efficient MTS forecasting plays a vital role in many applications,
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(a) Traffic flow time series on sensor 29 and 301 in PEMS04 dataset.
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(c) Indistinguishable samples in temporal dimension from sensor 301.

Figure 1: Examples of traffic flow MTS data and the indistin-
guishable samples in the spatial and temporal dimension.

from transportation and energy to economics [5, 10, 19], and has
remained an enduring research topic in both academia and industry.

Previous studies on MTS forecasting usually fall into two cat-
egories, i.e., statistical methods and deep learning-based meth-
ods. The former assume that there exist linear correlations among
variables (i.e., time series). Regarding the latter, early works [9]
utilize Convolution Neural Networks (CNN) to capture the cor-
relations among variables, yet ignore their non-Euclidean pair-
wise dependencies. Recently, Spatial-Temporal Graph Neural Net-
works (STGNNs) [14, 15, 18] have attracted increasing attention for
their state-of-the-art performance. STGNNs combine graph convo-
lutional networks (GCN [8]) and sequential models [3, 21]. The for-
mer deals with non-Euclidean dependencies among variables, and
the latter captures temporal patterns. Many researchers have made
persistent efforts to design powerful graph convolutions [2, 20, 22],
or to reduce reliance on the pre-defined graph structure [11, 13, 17].
Despite significant progress, recent STGNN-based methods are be-
coming sophisticated with limited improvements, which motivates
us to think: can we refine the critical factors of MTS forecasting, and
design a model that is as powerful as STGNNs but more concise and
efficient? To answer the above question, in this paper, we first iden-
tify the indistinguishability of samples in both spatial and temporal
dimensions as a key bottleneck. Subsequently, we design a simple
yet effective baseline model to alleviate this bottleneck.
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To intuitively illustrate our observation, we take the MTS data
in Figure 1 as an example, where each time series is derived from a
traffic flow sensor. First of all, as shown in Figure 1(a), the samples
are generated by a sliding window with a size of P+ F, where P and
F denote the length of historical data and future data, respectively.
For example, W;, Wy, and W3 are three windows at different time.
Furthermore, considering that different variables and periods have
different patterns, we can expect to generate many samples with
similar historical data but different future data. For example, Figure
1(b) shows samples from different variables (i.e., sensors 29 and 301)
under window Wi, where the historical data (left) are very similar
and the future data (right) are different. Similarly, samples from
sensor 301 under different periods (i.e., windows W, and Ws) are
shown in Figure 1(c). Simple regression models (e.g., MLPs) cannot
predict their different future data based on their similar historical
data, that is, they can not distinguish these samples. Therefore, we
refer to the characteristics behind the two kinds of sample pairs in
Figures 1(b) and 1(c) as the indistinguishability of samples in the
spatial and temporal dimensions. In addition, a very recent work [5]
also reveals that the critical factor for the success of STGNNS is
that GCN relieves spatial indistinguishability.

To alleviate the above bottleneck, we design a simple yet effective
baseline model for MTS forecasting, named STID, based on an
intuitive idea of attaching spatial-temporal identity information.
As shown in Figure 2, STID utilizes a spatial embedding matrix
E € RN*D and two temporal embedding matrices TP ¢ RNa*D
and TP™W ¢ RNwXD | to indicate the spatial and temporal identities.
N is the number of variables (i.e., time series), N is the number of
time slots in a day (determined by the sampling frequency), N,, = 7
is the number of days in a week, and D is the hidden dimension.
Subsequently, STID encodes information based on simple MLP
layers and makes predictions through a regression layer. STID
has a more concise architecture compared with the STGNN-based
methods, and extensive experiments have shown that STID is more
powerful than STGNN-based methods and has significant efficiency
advantages. These results suggest that we can design more efficient
and effective models by solving the indistinguishability of samples,
without being limited to STGNN .

2 PRELIMINARIES

DEFINITION 1. Multivariate Time Series Forecasting. Multi-
variate time series can be denoted as a tensor X € RT*N where T
is the number of time slots and N is the number of variables. Given
historical signals X € RPN from the past P time slots, multivariate
time series forecasting aims to predict the values Y € RF*N of the
F nearest future time slots. We additionally denote the sample from

; ioc i at 1 i P i F
time series i at time stept asX,_p, € R" andY, . €R".

DEFINITION 2. Spatial and Temporal Identities. Assuming N
time series and N time slots in a day and N,, = 7 days in a week,
the spatial and temporal identities are preserved in three embedding
matrices, i.e, E € RNXD TTD ¢ RNaxD  gyq TPIW ¢ RNwXD,
which are trainable parameters, and D is the hidden dimension.

3 MODEL ARCHITECTURE

As shown in Figure 2, STID consists of an embedding layer, multiple
MLP layers, and a regression layer. For simplicity, we denote FC(-)
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Table 1: Statistics of datasets.

Dataset | Length | # Variants | Sample Rate | Time Span

PEMS04 16992 307 5mins 2 months
PEMS07 28224 883 5mins 3 months
PEMS08 17856 170 5mins 2 months
PEMS-BAY | 52116 325 5mins 6 months
Electricity 2208 336 60mins 3 months

as a fully connected layer. The embedding layer transforms raw
historical time series X} € R” into latent space H: € RP by:

t—P:t
(1)

where D is the hidden dimension. Then, STID attaches spatial and
temporal identities E;, TP, and TP™W by:

H; = Fcembedding (Xi—P:t)’

Zy =Hy || E; | TP | TV, 2)

where Zi € R*P denotes the hidden representation with spatial
and temporal identities. Kindly note that the spatial and temporal
identities are randomly initialized trainable parameters, and the
temporal identities are shared among time slots for the same time
in a day and the same day in a week. Subsequently, we utilize L
layers of MLP with a residual connection to encode information.
The [-th MLP layer can be denoted as:

(Z)"! = FCy (o (FC (') + (Z1)'. 3)
Finally, the regression layer makes predictions based on (Zf)L:
?i;”F = Fcregression((zi)L)s (4)

where (Z;)L € R*D, and Yi:t+F € RF is the prediction. We use
Mean Absolute Error (MAE) as our loss function:

N 1 N F n .
LAY = 55 30 > -l

i=1 j=1

©)

We optimize the parameters of all spatial and temporal identities
and fully connect layers by minimizing £ via backpropagation and
gradient descent. We choose Adam [7] as our optimizer.

4 EXPERIMENTS
4.1 Experimental Setup

Datasets. Following previous works [5, 17, 18], we conduct exper-
iments on five commonly used multivariate time series datasets:
PEMS04, PEMS07, PEMS08, PEMS-BAY, and Electricity. The statisti-
cal information is summarized in Table 1. It is notable that PEMS04,
PEMS07, PEMS08, and PEMS-BAY datasets come with a pre-defined
graph to indicate the dependencies among time series. Due to space
limitations, we do not introduce each dataset in detail.

Baselines. We select a wealth of baselines that have official pub-
lic code, including the traditional methods (VAR [12], HI [4]) and the
typical deep learning methods (LSTM [6], DCRNN [10], STGCN [20],
Graph WaveNet [18], AGCRN [1], StemGNN [2]), as well as the
very recent works (GMAN [22], MTGNN [17], ST-Norm [5]). Due
to space limitations, we do not introduce each method in detail.
Metrics. We evaluate the performances of all baselines by three
commonly used metrics in multivariate time series forecasting,
including Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE), and Mean Absolute Percentage Error (MAPE).
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Figure 2: The overview of the proposed STID.

Implementation. The proposed model is implemented with Py-
torch 1.9.1 on an NVIDIA RTX 2080Ti GPU. The hidden dimen-
sion D is set to 32. The number of MLP layers L is set to 3. For
PEMS04, PEMS07, PEMS08, and PEMS-BAY datasets, we set the
length of historical data P to 12. For the Electricity dataset, we
set P = 168. For all datasets, we set the length of future data F
to 12. The learning rate is set to 0.001. The code is available at
https://github.com/zezhishao/STID.

4.2 Performance Study

For a fair comparison, we follow the dataset division in previous
works. The ratio of training, validation, and test sets for the PEMS-
BAY datasetis 7 : 1: 2, while the ratio for other datasetsis 6:2: 2. We
aim to predict the future time series with a length of 12, i.e., F = 12,
on all datasets. The results are shown in Table 3. We compared the
performance of these methods on the 3rd, 6th, and 12th time slots
as well as the performance of the average 12 time slots, which are
shown in the @3, @6, @12, and avg columns, respectively. The
best results are highlighted in bold, and the second-best results
are underlined. In addition, DCRNN, STGCN, Graph WaveNet (i.e.,
GWNet), and GMAN rely on a pre-defined graph. Therefore, since
there is no graph structure, the results of these methods in the
Electricity dataset are not available. As shown in the table, STID
consistently achieves the best performance in almost all horizons
in all datasets and does not require a pre-defined graph. These
remarkable results demonstrate the effectiveness of STID.

4.3 Efficiency Study

In this part, we compare the efficiency of STID with other learning
methods based on all datasets. For a more intuitive and effective
comparison, we compare the average training time required for
each epoch of these models. All models are trained on Intel(R)
Xeon(R) Gold 5217 CPU @ 3.00GHz, 128G RAM computing server,
equipped with NVIDIA RTX 2080Ti graphics cards.

The results are shown in Table 2. The computational complex-
ity of previous STGNN-based models usually increases linearly or
quadratically with the length of the input time series and the num-
ber of variables. Compared with other datasets, the PEMS07 dataset
has more variables (N = 883), and the Electricity dataset has longer
historical data (P = 168). Therefore, previous works spend more
time on the PEMS07 and Electricity datasets. Thanks to the concise
architecture without GCN and sequential models (e.g., RNN), STID
achieves consistent best efficiency on all datasets.

4.4 Ablation Study

In this part, we conduct ablation studies to verify the effectiveness
of spatial-temporal identity. We set three variants of our STID. STID
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Table 2: Efficiency study.
Dataset | PEMS04 | PEMS07 | PEMS08 | PEMS-BAY | Electricity

Methods ‘ Seconds/epoch

VAR | 1473 | 18937 | 765 | 5711 |  29.62
LSTM | 778 | 2573 | 456 | 2834 | 2226
DCRNN | 9512 | 51053 | 5717 | 35135 | N/A
STGCN | 4116 | 19813 | 2531 | 15568 | N/A
GWNet | 2788 | 17061 | 2972 | 11195 | N/A
AGCRN | 2849 | 18950 | 19.29 | 10209 | 14417
StemGNN | 1629 | 13631 | 941 | 63791 | 56.24
GMAN | 10731 | 82777 | 71.04 | 41067 | N/A
MTGNN | 2511 | 107.03 | 7945 | 9018 | 2859
STNorm | 1820 | 7412 | 3245 | 6436 | 15586
STID 524 | 1432 | 446 | 1576 | 231

w/o E removes the spatial identity. STID w/o TP removes the TTiP
temporal identity, while STID w/o TP™W removes the TPV temporal
identity. We conduct experiments on the PEMS04 dataset and report
the avg column on all metrics. The results are shown in Figure 3.
In summary, all these identities are beneficial. The most important
one is spatial identity, which means that spatial indistinguishability
acts as a major bottleneck of MTS forecasting. Furthermore, the
temporal identities TT™® and TP™W are also important since data in
the real world often contain daily and weekly periodicity.
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Figure 3: Ablation study on PEMS04 dataset.
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4.5 Visualization

In order to further intuitively understand and evaluate our model, in
this section, we visualize the learned spatial and temporal identities.
Specifically, we visualize E € RNXP TTID ¢ RNaxD and TPIW ¢
RNwXD of STID on PEMS08 datasets, where N = 170, N, = 288,
and N,, = 7. Here we utilize t-SNE [16] to visualize E and TTP.
For TPIW ¢ RNwXD  where N,, = 7 < D = 32, we train STID
by setting the embedding size of TPV to 2 to get a more accurate
visualization. The results are shown in Figure 4.
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Table 3: Multivariate time series forecasting on the PEMS04, PEMS07, PEMS08, PEMS-BAY, and Electricity datasets.

Dataset | PEMS04 | PEMS07 | PEMS08 | PEMS-BAY | Electricity
Method  Metric | @3 @6 @12 Avg. | @3 @6 @12 Avg | @3 @6 @12 Avg | @3 @6 @12 Avg | @3 @6 @12 Avg.
MAE | 4233 4235 4237 4236 | 49.02 4903  49.06  49.04 | 3455 3457 3459 3457 | 3.06 306 305 306 | 9244 9258 9279 9258
HI RMSE | 61.64  61.66 6167 6166 | 71.16 7118 7120 7118 | 5041 5043 5044 5043 | 7.05  7.05  7.03  7.04 | 167.00 167.05 167.21  167.07
MAPE | 29.90% 29.92% 29.96% 29.92% | 22.73% 22.75% 22.79% 22.75% | 21.60% 21.63% 21.68% 21.63% | 6.85% 6.84% 6.83% 6.84% | 70.16 7046 7091  70.43
MAE | 2194 2372 2676 2351 | 3202 3518 3837 37.06 | 1952 2225 2617 2207 | 174 232 293 221 | 27.69 2819 2934 2829
VAR RMSE | 3430 3658  40.28 3639 | 4883 5291 5682 5573 | 2973 3330 3897 3102 | 316 425 544 412 | 5606 5755 6045 5778
MAPE | 16.42% 18.02% 20.94% 17.85% | 1830% 20.54% 22.04% 19.93% | 1254% 14.23% 17.32% 14.04% | 3.60% 5.00% 6.50% 5.01% | 7553% 79.94%  86.62%  80.23%
MAE | 2137 2372 2676 2381 | 2042 2318 2873 2354 | 17.38 2122 3069 2131 | 205 220 237 218 | 1857 2068 2379 2042
LSTM  RMSE | 3331 3658  40.28 3662 | 3321 3754 4563 3820 | 2627 31.97% 4396 3210 | 419 455 496 447 | 4886 4896 5644  49.03
MAPE | 15.21% 18.02% 20.94% 18.12% | 8.79%  9.80% 12.23% 9.96% | 12.63% 17.32% 25.72% 17.47% | 4.80% 520% 570% 5.04% | 32.88% 37.21% 39.42% 35.58%
MAE | 1853  19.65 2167 1971 | 1945 2118 2414 2120 | 1416 1524 1770 1526 | 131 167 199 162 N/A
DCRNN  RMSE | 2961 3137 3419 3143 | 31.39 3442 3884 3443 | 2220 2426 2714 2428 | 2.80 381 466 374 N/A
MAPE | 1271% 1345% 15.03% 13.54% | 8.29%  9.01% 10.42% 9.06% | 9.31%% 9.90% 11.13% 9.96% | 2.73% 3.75% 4.73% 3.61% N/A
MAE | 1874 1964 2112 1963 | 2033 2166 2416 2171 | 1495 1592 1765 1598 | 135 169 201  1.63 N/A
STGCN ~ RMSE | 2984 3134 3353 3132 | 3273 3535 3948 3541 | 2348 2536  28.03 2537 | 2.88% 3.83 456  3.73 N/A
MAPE | 1442% 13.27% 14.22% 13.32% | 8.68%  9.16% 10.26% 9.25% | 9.87% 10.42% 11.34% 10.43% | 2.88% 3.85% 4.74% 3.69% N/A
MAE | 1800 1896 2053 1897 | 1869 2026 2279 2025 | 1372 1467 1615 1467 | 130 163 195 158 N/A
GWNet RMSE | 28.83 3033 3254 3032 | 3069 3337 3711 3332 | 2171 2350 2595 2349 | 278 373 452  3.65 N/A
MAPE | 13.64% 14.23% 1541% 14.26% | 8.02% 856% 9.73%  8.63% | 880%  9.49% 10.74% 9.52% | 2.71% 3.66% 4.63% 3.52% N/A
MAE | 1852 1945 2064 1936 | 1931 2070 2274  20.64 | 1451 1566 1749 1565 | 137 170 199 163 | 2288 2447  27.24  23.88
AGCRN ~ RMSE | 2979 3145 3331 3128 | 31.68 34.52 37.94 3439 | 2287 2500  27.93 2499 | 293 389 464 378 | 4998 5417 5976  53.02
MAPE | 1231% 12.82% 13.74% 12.81% | 8.18%  8.66% 9.71%  8.74% | 9.34% 10.34% 11.72% 10.17% | 2.95% 3.88% 4.72% 3.73% | 41.33% 48.93% 52.57% 45.83%
MAE | 1948 2140 2490 2161 | 1974 2207 2620 2223 | 1449 1584 1810 1591 | 144 193 257 192 | 2145 2356 2498  22.89
StemGNN RMSE | 3074 3346 3829 3380 | 3232 3616 4232 3646 | 23.02 2538 2877 2544 | 312 438 5838 446 | 4109 4695 5197  46.21
MAPE | 13.84% 1585% 19.50% 16.10% | 8.27%  9.20% 11.00% 9.20% | 9.73% 10.78% 12.50  10.90% | 3.08% 4.54% 6.55% 4.54% | 57.12% 65.34% 62.81% 57.26%
MAE | 1827 1881  20.01 1883 | 1925 2033 2225 2043 | 13.80 1462 1572 1481 | 134 165 189 158 N/A
GMAN  RMSE | 2935 3085 3132 3093 | 31.20 3330 3640 3330 | 2288 2412 2647 2419 | 292 381 438 375 N/A
MAPE | 12.66% 13.25% 13.40% 13.21% | 821%  8.63% 9.48%  8.69% | 9.41%  9.57% 10.56% 9.69% | 2.88% 3.71% 4.51% 3.69% N/A
MAE | 1865 1948 2096 1950 | 1923 2083 2360 2094 | 1430 1525 1680 1531 | 134 167 197 160 | 1678 1843 2049  18.18
MTGNN  RMSE | 30.13 3202  34.66 3200 | 3115 3393 3810 34.03 | 2255 2441 2696 2442 | 284 379 455 370 | 3691 4262 4833 42
MAPE | 13.32% 14.08% 14.96% 14.04% | 855%  9.30% 10.10% 9.10% | 10.56% 10.54% 10.90% 10.70% | 2.80% 3.74% 4.57% 3.57% | 48.16% 5131% 56.25% 50.77%
MAE | 1828 1892 2020 1896 | 1915 2063 2260  20.52 | 1444 1553 1720 1554 | 134 167 196 160 | 1874 2114 2405  20.69
STNorm  RMSE | 2970 3112 3291 3098 | 3170 3510 3865 34.85 | 22.68 2507 27.86 2501 | 2.88  3.83 452 371 | 40.86 4824 5527 4755
MAPE | 12.28% 1271% 1343  12.69% | 8.26% 8.84%  9.60% 8.77% | 9.32%  9.98% 11.30% 10.03% | 2.82% 3.75% 4.62% 3.60% | 32.66% 37.07% 42.63% 35.98%
MAE | 1751 1829 19.58 18.29 | 1831 19.59 2152 19.54 | 13.28 14.21 1558 14.20 | 1.30 162 189 155 | 16.08 17.87 19.25 17.39
STID RMSE | 28.48 29.86 3179 29.82 | 3039 3290 36.29 32.85 | 21.66 23.57 25.89 2349 | 281 372 440 3.62 | 3449 4165 4577  40.80
MAPE | 12.00% 12.46% 13.38% 12.49% | 7.72% 8.30% 9.15% 8.25% | 8.62% 9.24% 10.33% 9.28% | 2.73% 3.68% 4.47% 3.51% | 31.95% 37.80% 40.26% 35.53%
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Figure 4: Visualization of learned spatial and temporal identities.

First, Figure 4(a) demonstrates that the identities of different
variables (i.e., time series) are likely to cluster. This is in line with the
characteristics of the transportation system. For example, nearby
traffic sensors in the road network tend to share similar patterns.
Second, Figure 4(b) visualize the embeddings of 288 time slots
for each day. It is obvious that there is daily periodicity in the
PEMSO08 dataset. Moreover, adjacent time slots tend to share similar
identities. Last, Figure 4(c) shows that the identities of weekdays
are similar, while the weekends’ are very different.

5 CONCLUSION

In this paper, we propose to explore the critical factors of MTS
forecasting to design a model that is as powerful as STGNNs but
more concise and effective. Specifically, we identify the indistin-
guishability of samples in both spatial and temporal dimensions as
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a key bottleneck. Subsequently, we propose a simple yet effective
baseline for MTS forecasting by attaching spatial and temporal
identity information, i.e, STID. STID achieves better efficiency and
performance simultaneously based on simple networks. These re-
sults suggest that by solving the indistinguishability of samples, we
can design models more freely, without being limited to STGNNS.
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