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Abstract—The prevalent adoptions of GPS-enabled devices
have witnessed an explosion of various location-based services
which produces a huge amount of trajectories monitoring the
individuals’ movements. In this paper, we tackle Trajectory-
User Link (TUL) problem, which identifies humans’ movement
patterns and links trajectories to the users who generated them.
Existing solutions on TUL problem employ recurrent neural
networks and variational autoencoder methods, which face the
bottlenecks in the case of excessively long trajectories and frag-
mentary users’ movements. However, these are common char-
acteristics of trajectory data in reality, leading to performance
degradation of the existing models. In this paper, we propose
an end-to-end attention recurrent neural learning framework,
called TULAR (Trajectory-User Link with Attention Recurrent
Networks), which focus on selected parts of the source trajectories
when linking. TULAR introduce the Trajectory Semantic Vector
(TSV) via unsupervised location representation learning and
recurrent neural networks, by which to reckon the weight of
parts of source trajectory. Further, we employ three attention
scores for the weight measurements. Experiments are conducted
on two real world datasets and compared with several existing
methods, and the results show that TULAR yields a new state-of-
the-art performance. Source code is public available at GitHub:
https://github.com/taos123/TULAR.

I. INTRODUCTION

With the developments of tracking techniques (i.e., GPS),
the movement trajectories of urban entities (e.g., taxi, bus,
passenger) are collected automatically and become widely
available. Big urban trajectory data analysis plays an essential
role in many smart city applications, such as traffic man-
agement [1], [2], events predictions [3], [4] and navigation
service. Discovering human moving behavior is an important
part of trajectory data analysis, having attracted wide attention
from both academia and industry, which is extensively applied
in location based services (LBS) and location based social
networks (LBSN) [5], [6]. Human movement analysis enables
a better understanding and using in various applications such
as: mobility pattern discovering [7], [8], next visit-location
recommendation [9]–[11] and routine planning [12].

In this paper, we discuss TUL problem (Trajectory-User
Link) , an essential task in human moving behavior analysis,
aiming to identify and link the trajectories to users who
generate them [13]. TUL can be applied in a lot of trajectory
data mining domains such as merging two trajectory datasets,
collected from different sources, where users’ labels are incon-
sistent; Recognizing target identities in anonymous trajectories
such as radar system. The main challenges of TUL lie on how

to model both the complex spatial and temporal information of
trajectories and how to discriminate resemble moving patterns
of different users. The latter can put another way that the
difference of trajectories of the same user at different times are
probably bigger than the trajectories of different accompanied
users. However, the common cluster analysis is that objects
in the same group are more similar to each other than to
those in other groups. Those following problems will also
bring troubles to TUL: the number of users is much larger
than categories in the general trajectory classification and the
trajectory datasets are very spare acquired in real world.

Trajectory similarity based methods such as LCSS (Longest
Common Sub-Sequence), EDR (Edit Distance on Real Se-
quence) and DTW (Dynamic Time Warping) are one kind of
TUL solutions. Those methods are general trajectory classi-
fication methods but face problems when the data magnitude
increase. Deep neural networks based models have achieved a
better performance in recent years. TULER [13] and TULVAE
[14] are proposed for TUL problem solutions, which employ
deep recurrent neural networks for modeling the trajectory
information, achieving the best performance. TULER employs
sequence embedding methods to map check-in locations into
vector space, called check-in embedding, which is inspired
by word2vec method in natural language process [15], [16].
Check-in embedding benefits from acquiring a better semantic
representation for locations than representation by longitude
and latitude. DNN based models use RNNs (e.g., LSTM
[17] or GRU [18]) to model the sequence of check-in and
distinguish different users of trajectories. However, TULER
and TULVAE face two deficiencies: (1) The check-in embed-
ding process enhances the semantic information for locations
meanwhile maps the different location in the similar vectors,
which results in hardly distinguish the accompanied patterns.
(2) As the growing of trajectory length, it will be harder
to model whole trajectory information for recurrent neural
networks.

In this paper, we propose a novel Trajectory-User Link
method, called TULAR, which solves TUL problem with
Attention Recurrent Neural Networks. We propose Trajectory
Semantic Vector (TSV) in TULAR, via trajectory embedding
and recurrent neural networks model, which maps the variable-
length source trajectories to fixed-length vectors in feature
space. In addition, we put to use three different attention
scores to focus on selected parts of source trajectory by su-
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pervised learning. Recalculated TSV is employed for ultimate
trajectory-user linking. Comparing with existing work, our
main contributions are:
• A novel Trajectory-User Link method, TULAR, is pro-

posed, which improves both accuracy and efficiency for
TUL problem. TULAR is an end-to-end trajectory identi-
fying neural network framework, with superb scalability.

• TULAR introduces TSV, a representation learning
method, mapping the variable-length trajectories to fixed-
length vectors in feature space. Trajectories of the same
user are likely more similar to each other in feature space,
which is untenable in primitive geospatial space.

• Three different trajectory embedding methods and three
different attention score measures are used in this paper.
A lots of experiments are conducted to demonstrate
our improvements, using four real world datasets and
compared with several state-of-art methods.

• We arrange an easy-to-use project and make
the source code public available at GitHub:
https://github.com/taos123/TULAR.

The rest of paper is assigned as follow: In section 2 we
introduce the relation works about TUL problem and attention
recurrent networks. We introduce preliminaries in section 3.
Technical detail of TULAR method is discussed in section 4.
In section 5, we present the detail of experiments and show
the results. In section 6 we conclude our work.

II. RELATED WORKS

Trajectory-User link (TUL) problem is a tough trajectory
classification problem because the number of the classes is
much large than common trajectory classification. Although
it has been formally defined and addressed until the year
of 2017, many works have been done for it. The traditional
approaches, such as DTW, LCSS and Trjectory-Hausdorff
Distance [19], find the similarity between different trajectories.
In this way, similar trajectories are classified into same user. In
recent year, deep neural networks have been confirmed a better
performance in the TUL problem [13], [14]. Those methods
employ embedding method to enhance the locations semantic
information. Meanwhile, RNNs (e.g., LSTM, GRU and their
variant) are employed to model the sequence characteristics of
trajectory. More information is considered into the model in
[14], which learns the human movement patterns in a neural
generative architecture with stochastic latent variables than
span hidden statues in RNN.

Attention is human vision mechanism, which focus the
restricted resource to acquire more valuable information and
it is widely used in deep neural networks. Attention recur-
rent networks are first employed under the encoder-decoder
architectures, also called sequence to sequence [20] (seq2seq)
model, which contains two parts of RNNs model and are
widely employed in nature language process and other se-
quence process. Attention mechanism is selectively focusing
on parts of the source sequence. The core of attention is to
calculate the attention scores. Attention recurrent networks are
used to improve performance of NLP task such as neural

machine translation (NMT) [21], automatic summarization
[22], sentiment analysis [23], [24], etc. Attention mechanism
have been used in location prediction tasks [10], predicting the
future locations of users based on the historical movements.
Yet attention mechanism has not been used in trajectory-
user link problems. In this paper, we propose the trajectory
semantic vector, which is calculated by users’ trajectories
under attention mechanism. We will show the details in the
following sections.

III. PROBLEM STATEMENT

Before we introduce TULAR, we need to expound the
unambiguous definition about TUL problem. In addition, we
will also introduce notations used in this paper.

a) Trajectory: Trajectory is a sequence of geo-points
which records the movements of human or other targets such
as animals, hurricane and vehicles. A general trajectory has
three key elements: who, when and where, with the following
forms T = {< u, t1, p1 >,< u, t2, p2 >, · · · < u, tn, pn >},
where u is the targets identity recording ”who”, t is the
timestamp recording ”when” and p is position information
recording ”where”. In some cases such as radar system, the
target identities are unknown, which are called anonymous
trajectories. In real world datasets, the position can be a
coordinate of latitude and longitude or POI (point of interests)
such as park, restaurant, etc. Trajectories consisted by POIs
also called check-in based trajectories. In this paper, we use
check-in based trajectory datasets as the basic inputs. In the
real world datasets, the sampling rate is unsettled, and the
length of trajectory is variable.

b) Trajectory-User Link: TUL is a task to identify
anonymous trajectories and link them to users who generate
them. Let T = T1, T2, · · · , Tm denotes the set of trajectories
where users’ identities are unknown and U = U1, U2, · · · , Un

denotes the set of users. In the real world datasets, m is much
larger than n in general. The linking task is to find a map
function f(T ), satisfied the follow Equation (1).

min
f∈F

1

m

m∑
i=1

‖f(T )− Tr‖, f(T ) ∈ U , Tr ∈ U (1)

Where ‖·‖ denotes difference evaluation operator, Tr is the
real user of trajectory T and F is hypothesis space of TUL
problem.

IV. METHOD

In this section, we introduce TULAR, a framework for TUL
task. The overview of TULAR is shown in Figure 1. Trajectory
data preprocess and segmentation are not the key points in this
paper and we follow preprocess operations as literature [13].
We will focus on TSV evaluation and attention recurrent neural
networks for linking in the follow section.

A. Trajectory Semantic Vector Evaluation

There are two challenges in trajectory mining process: (1)
the length of trajectories are unfixed; (2) the information of
locations in trajectories are rarely considered. We propose
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Fig. 1: The structure of TULAR. There are four main parts
of TULAR structure: trajectory preprocess and segmentation,
check-in embedding, attention recurrent neural networks and
multi-layer perceptron for linking. The first three parts consti-
tuted TSV evaluation. The last part determine who generated
the trajectories.

trajectory semantic vector (TSV), which is a fix-length vector,
mapped from source trajectory into the N-dimension Euclidean
space. We employ location embedding, an unsupervised learn-
ing method which learns a map function from geographical
space into vector space so that the same locations are in the
near vectors. Then a recurrent neural networks model is used
to encode the sequences of location embedding to get the TSV.

Trajectory is a sophisticated data type for every location
constituting the trajectory containing strong spatial seman-
tic information. Those locations are corresponding to the
real geographical position in the world, such as restaurant,
emporium, residence, etc. The sequence of locations reflect
the temporal semantic information which reflects the user’s
visiting preference, habits and patterns. As a result, extracting
the appropriate feature from original trajectory is an essential
process in the trajectory data mining domains. Then we extract
those information from source trajectories as the format <
pi, C(pi, p) >, where the C(pi, p) is the context of location pi.
It is obvious that the locations with same semantic information
are probably with the homologous context.

Check-in locations represented by longitude and latitude
are inadequacy for neural network model. Following [13], we
represent each check-in locations with a fixed-dimensional
vector v, which called check-in embedding. Similar with
word2vec in the nature language process, check-in embedding

learns the vector representation from the check-in context
in the trajectory. The benefits of check-in embedding are
to map the similar semantic check-in locations into nearby
vectors in the Euclid space. To get check-in locations vector
representation, we need maximize the conditional probability
p (v (pi)), which is defined by Equation 2.

p (v (pi) |C(pi, p)) =
∏

p′∈C(pi,p)

p (v (pi) |v (p′))

=
∏

p′∈C(pi,p)

exp {v (pi) · v (p′)}∑
p′′∈C(pi,p)

exp {v (p′′) · v (p′)}

(2)
Where v (pi) represents the check-in location vector repre-

sentation and C(pi, p) is the context of pi.
However, there is another problem in the check-in location

embedding. The original trajectories are recorded by days,
which may create the cases that dividing unrelated check-in
locations into an integrated trajectory. To address this problem,
we repartition original trajectories into sub-sequences by the
time intervals (e.g., 6 hours [13]).

After embedding check-in location into vectors, we need
to consider another problem in trajectory. We employ a RNN
based model to encode the trajectory to a vector. RNN is a
class of artificial neural networks where connections between
nodes form a directed graph along a temporal sequence.
It allowed models to exhibit temporal dynamic behaviors.
Unlike feedforward neural networks, RNNs can use their
internal state (memory) to process sequences of inputs. Three
RNN variants including: long short-term memory (LSTM),
gated recurrent units (GRU) and bidirectional recurrent neural
networks (BRNN) are employed in TULAR.

First we employ LSTM for TSV evaluation. A common
LSTM unit is composed of a cell, an input gate, an output
gate and a forget gate. The cell remembers values over
arbitrary time intervals and the three gates regulate the flow
of information into and out of the cell. LSTMs are developed
to deal with the exploding and vanishing gradient problems
that can be encountered when training traditional RNNs. For
the sub-trajectory T = {l1, l2, · · · , lk} ,and let ht−1 denote
the last state, ht denotes the current state and h̃t denotes the
candidate state. We can use recursion formula as follow.

ft = σg (Wfv (pt) + Ufht−1 + bf )

it = σg (Wiv (pt) + Uiht−1 + bi)

ot = σg (Wov (pt) + Uoht−1 + bo)

ct = ft ◦ ct−1 + it ◦ σc (Wcv (pt) + Ucht−1 + bc)

ht = ot ◦ σh (ct)

4591
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In the training process, the initial values are c0 = 0 and
h0 = 0 and the operator ◦ denotes the Hadamard product
(element-wise product). The subscript t indexes the time step.
v (pt) is input vector to the LSTM units. ft is forget gate’s
activation vector. it is update gate’s activation vector. ot is
output gate’s activation vector. ht is hidden state vector also
known as output vector of LSTM units. ct is cell state vector.
W , U and b are weight matrices and bias vector parameters
which need to be learned during training. σg is a sigmoid
function. σc is a hyperbolic tangent. σh is hyperbolic tangent.
In this way, we can get the every time the RNN output. And
then, we use mean of the outputs of every time to evaluate the
TSV as follow.

TSV =
1

n

n∑
t=1

outputt (3)

Then we employ GRU for TSV evaluation. Gated recurrent
units (GRU) are a gating mechanism in recurrent neural
networks, which is proposed in literature [25]. The GRU is
like a long short-term memory (LSTM) with forget gate but
has fewer parameters than LSTM, as it lacks an output gate.
GRUs have been shown to exhibit even better performance on
certain smaller datasets.

zt = σg (Wzv (pt) + Uzht−1 + bz)

rt = σg (Wrv (pt) + Urht−1 + br)

ht = (1− zt)◦ht−1+zt◦σh (Whv (pt) + Uh (rt ◦ ht−1) + bh)

Initially, for t = 0, the output vector is ht = 0. Where the
v (pt) is the input vector, ht is output vector, zt is update gate
vector, rt is the reset vector and W , U and b are the parameters
need to learn.σg is a sigmoid function. σh is a hyperbolic
tangent. Similar with LSTM, the TSV of sub-trajectory T is
evaluated by the mean of hidden outputs of GRU of every
time nodes, which is show in Equation 3.

Bidirectional recurrent neural networks is a neural structure
which connects two hidden layers of opposite directions to
the same output. With this form of generative deep learning,
the output layer can get information from past (backwards)
and future (forward) states simultaneously. BRNNs were in-
troduced to increase the amount of input information available
to the network. Standard recurrent neural network (RNNs)
also have restrictions as the future input information cannot
be reached from the current state. On the contrary, BRNNs do
not require their input data to be fixed. Moreover, their future
input information is reachable from the current state. BRNN
are especially useful when the context of the input is needed.
For example, in handwriting recognition, the performance can
be enhanced by knowledge of the letters located before and
after the current letter. We choose LSTM units as BRNN units,
and the output is shown in Equation 4.

output = concat (outputforward, outputback) (4)

TSV under BRNN is also evaluated by equation 3.

B. Attention Recurrent Neural Networks

In this section, we introduce how to use attention recurrent
neural networks in TUL problem. In the above section, we
introduce TSV and we want to use it to link the trajectories
to users. The previous works employed a softmax function for
classification, where the loss function L can be evaluated as
Equation 5.

L = cross entropy (user, softmax (TSV )) (5)

However, there are two problem when using TSV for linking
directly: (1) The original trajectories will contain noise points
when the trajectories is too long, but the noise points will be
given the same weight as the normal points. (2) Evaluating the
mean of outputs of every time points will reduce the impact
of some key points, which may determine the linking results
in the original trajectories.

As it remembered in the vanilla seq2seq model, we pass the
last source state from the encoder to the decoder when starting
the decoding process. It works well for short and medium-
length sentences. However, for long sentences, the single
fixed-size hidden state becomes an information bottleneck.
Instead of discarding all of the hidden states computed in the
source RNN, the attention mechanism provides an approach
that allows the decoder to peek at them (treating them as a
dynamic memory of the source information). By doing so,
the attention mechanism improves the translation of longer
sentences. Nowadays, attention mechanisms are the de-facto
standard and have been successfully applied to many other
tasks, including image caption generation, speech recognition,
and text summarization.

Combining with the above point of view, we need to build an
attention based model to re-evaluate TSV. We assign a weight
to the outputs of each time point. Let ats denote the weight of
each time point, which gives the different importance of every
points. Then the new TSV can be evaluated as Equation 6.

TSVattention =
∑
s

atshs (6)

In the above equation, the key of TSVattention is to
evaluate the weight, which is also called the attention score.
We calculate the relevancy between the trajectory semantic
encoding and check-in locations. As a result, the key point
of attention recurrent neural networks is how to evaluate the
weight ats. We reference Luong’s [26] multiplicative style and
Bahdanau’s [21] additive style based score function.

Under the Luong’s multiplicative attention style, which
called multi-based attention score function, the weight of
nodes can be evaluated as follow

score
(
ht, h̄s

)
= ht

TWhs
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where W is the parameter need to learn, as the same
dimension as input vector.

Under Bahdanau’s additive attention style [21], the weight
of nodes can be evaluated as follow

score
(
ht, h̄s

)
= tanh

(
W1ht +W2hs

)
where W1 and W2 are the parameter need to learn in the

training process. The tanh() is active function.
In addition, we employ a simple dot based style. The weight

of nodes can be evaluated as follow.

score
(
ht, h̄s

)
= ht

T · h̄s
Finally, in case of the computing overflow, we need to

normalize the weight of nodes. And the normalized weight
of nodes can be evaluated as follow

ats =
exp

(
score

(
ht, h̄s

))∑S
s′=1 exp

(
score

(
ht, h̄s′

))
After introduction of attention based TSV evaluation. We

need to link the TSV to users where the ultimate goal is to
solve TUL problem.

A multilayer perceptron (MLP) is a class of feedforward
artificial neural network (ANN). The term MLP is used
ambiguously, sometimes loosely to refer to any feedforward ar-
tificial neural networks, sometimes strictly to refer to networks
composed of multiple layers of perceptrons (with threshold
activation). A MLP consists of three layers of nodes: an input
layer, a hidden layer and an output layer. Except for the input
nodes, each node is a neuron that uses a nonlinear activation
function. MLP utilizes a supervised learning technique called
backpropagation for training. Its multiple layers and non-linear
activation distinguish MLP from a linear perceptron. It is able
to distinguish data that is not linearly separable.

TUL is a multi-classification problem in essence, so we
employ softmax function to link trajectories to their users [13].
For trajectory semantic vector TSV , let MLP (TSV ) denotes
the outputs of MLP, which is shown as follow.

MLP (TSV ) = tanh(W · TSV + b)

Let Vu denotes the one hot representation of users. In the
final, we rewrite the loss function L as the Equation 7.

L = cross entropy (Vu, softmax (MLP (TSV ))) (7)

C. Model Details and Parameter Setting

In this section, we introduce the details of TULAR including
check-in location embedding model and attention recurrent
neural network model.

An open python library Gensim1 is applied in our model
for check-in location embedding. There are three important
parameters in embedding training. Let vector size denotes
the dimensionality of the location embedding vectors, window

1https://radimrehurek.com/gensim/

denotes the length of the context and learning iteration
denotes the iterations over the check-in location embedding
models. The value of vector size and window depend on the
size of trajectory training corpus, and we find the model per-
forms best when vector size is taken as 250. When we raise
the value of learning iteration, we can get a more stable
values of vector size. We find that if learning iteration
is greater than 100, vector size will converge. We choose
skip-gram [15] as the training algorithm.

TUL problem can be regard as a multi-classification prob-
lem as every users regarded as one categories. As a result, we
use a Multilayer Perceptron (MLP) to classify TSV. A softmax
function is used to map the non-normalized output of MLP to a
probability distribution over predicted output classes. We use
the cross-entropy loss as TULAR loss function and we use
Adam [27] as the optimization method, because it is able to
calculate the learning rate of each parameter adaptively.

In addition, in order to reduce overfitting in recurrent neural
networks, we employ a regularization technique dropout in
our method, which is a very efficient way of performing
model averaging with neural networks by preventing complex
co-adaptations on training data. We set droput rate to 0.5.
Let hidden size denotes the number of hidden layers in the
recurrent neural networks and attention size denotes the size
of TSV. We adopt grid search strategy to choose the optimal
parameters of hidden size and attention size. We set the
initial learning rate to 0.00095 and reduce it by 0.0001 step
by step. We tried a very large number of learning iteration and
find that after 30 iterations of training, the network achieves
convergence. The specific parameter values of TULAR are
shown in Table I.

TABLE I: TULAR Parameters Details

Parameter Available Range Recommended Value
vector size [200, 300] 250
window ≥ 20 20
learning iteration ≥ 20 100
hidden size [100, 500] 300
learning rate [0.00015, 0.00095] 0.00095
dropout rate [0, 1] 0.5
attention size [500, 1000] 600
stacked TULAR ≥ 2 2
training iteration ≥ 30 30

The first column are important parameters in TULAR training. The second
column are available ranges of parameter that we have tested. The last
column are the specific values we choose in this paper for the best
performance.

V. EXPERIMENTS

In this section, we discuss TULAR performance in real
world datasets. There are three aspects which we take into
consideration: overall performance, training convergence com-
parison and training time. Before comparing the performance
among various proposed methods, we need to introduce the
details of datasets, baselines and metrics.
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A. Datasets

We conduct our experiments in the public trajectory
data [28]: Gowalla2 and Brightkite3. Both of them
are collected from location-based social networking
website where users share their locations by check-
in record. The data are recorded information as
{user id, timestamp, latitude, longitude, location id}.
We randomly select different number of users in Gowalla
and Brightkite which is in the same as [13] in order to be
consistent with the benchmarks. The overview of the datasets
is shown in Table II.

TABLE II: Datasets description and statistics

Datasets |U | |T | |C| |Ave|

Gowalla 201 19968 1958 99.24
112 9920 6683 88.57

Brightkite 34 9920 652 291.76
92 19904 471 216.34

|U | is the number of users in the datasets. |T | denotes the number of
trajectories. We can see |T | � |U |. |C| is the number of check-in
locations. |Ave| represents the average check-in locations number in one
trajectory.

B. Baseline

We compare TULAR with several existing approaches. The
introductions of those methods are shown as follow.
• TULER [13]. TULER uses the check-in embedding to

enhance the check-in locations information and employs
RNNs to model the sequence features. TULER employs
LSTM, GRU and Bi-LSTM as RNN models which
called: TULER-LSTM, TULER-GRU, TULER-LSTM-
S, TULER-GRU-S and Bi-TULER. We employ a open
source of TULER in github4.

• TULVAE [14]. TULVAE learns the human movements
in a neural generative architecture with stochastic la-
tent variables than span hidden states in RNN. TUL-
VAE includes HTULER-L, HTULER-G, HTULER-B and
TULVAE. TULVAE was the state-of-the-art method for
TUL problem. We employ a open source of TULVAE in
github5.

C. Metrics

We use the Acc@K to measure models performance, which
is the common metrics in information retrieval domains.

Acc@K =
#correctly identified trajectories @K

#trajectories

where the #correctly identified trajectories @K is the
correct users at top K candidates and #trajectories is the
total number of un-linked trajectories. In addition, because
TUL is a multi-classification task, we also need to consider

2Gowalla: http://snap.stanford.edu/data/loc-Gowalla.html
3Brightkite: http://snap.stanford.edu/data/loc-Brightkite.html
4TULER: https://github.com/gcooq/TUL
5TULVAE: https://github.com/AI-World/IJCAI-TULVAE

macro-R, macro-P and macro-f1. The macro-R is the mean of
recall value of every classification and macro-P is the mean of
precision value of every classification. The macro-f1 is defined
as follow.

macro− F1 = 2× macro− P ×macro−R
macro− P +macro−R

D. Results

a) Overall: The experiments are conducted on TULAR
with three types of RNN variants and three attention scores. In
totally, there are nine variants of TULAR, including TULAR-
LSTM-M, TULAR-LSTM-A, TULAR-LSTM-D, TULAR-
GRU-M, TULAR-GRU-A, TULAR-GRU-D, TULAR-BRNN-
M, TULAR-BRNN-A, TULAR-BRNN-D, where M, A, D
represent multiplicative style attention, additive style attention
and dot style attention. Table III and Table IV show the per-
formance comparisons on two different datasets. The results
show that TULAR achieves the best performance than existing
methods in terms of accuracy@1, accuracy@5 and macro-
F1 metrics. TULAR with BRNN achieves the best results on
Gowalla datasets. While, TULAR with LSTM achieves the
best results on Brightkite datasets. TULAR yields 10.59%,
8.78%, 16.12% improvements compared to TULVAE (state-
of-the-art method) for Acc@1, Acc@5 and macro-F1 metrics,
and yields 7.57%, 7.10%, 12.99% improvements compared to
TULVAE for Acc@1, Acc@5 and macro-F1 metrics. TULAR
with BRNN and dot attention model achieves the best results
in terms of accuracy@1 on Brightkite |92|, yielding 21.72%,
18.10% and 32.42% improvements compared to TULVAE for
Acc@1, Acc@5 and macro-F1 metrics.

As we can see from Tabel II, the average of trajectories
length in Brightkite is much larger than the length in Gowalla.
As a result, the performance of RNN based model is greatly
reduced on Brightkite, even if the user’s number of Brightkite
is less than the number of Gowalla. On the contrary, TULAR
achieves a better performance on Brightkite, which can be
explained that attention mechanism amplifies certain parts of
source trajectories.

b) Effect of Attention Mechanism: We compare the effect
of attention mechanism on training convergence under differ-
ent RNN models. Accuracy@1 in 30 iterations on Gowalla
|201| with LSTM, GRU and BRNN are shown in the Figure 2
first line. Accuracy@1 in 30 iterations on Brightkite |92| with
LSTM, GRU and BRNN are shown in the Figure 2 second line.
It can be seen that TULAR with multi-based attention is the
lowest accuracy at the beginning of training. The reason of this
results is that multi-based attention contains most parameters
than the remaining two. Because of our random initialization
parameters, it takes longer time for parameter learning.

c) Training Time: Besides, we analyze the effect of
attention mechanism on training time. Because the training
time is rely depend on datasets, we select one of the datasets to
show the training time comparison result. Figure 3 shows the
training time consumption comparison on Gowalla |201|. As
we can see, attention mechanism does bring extra time cost due
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TABLE III: TULAR Performance Comparison on Gowalla

Method
Metric Acc@1 Acc@5 macro-P macro-R macro-F1 Acc@1 Acc@5 macro-P macro-R macro-F1

|U | = 112 |U | = 201
TULER-LSTM 41.79 57.89 33.61 31.33 32.43 41.24 56.88 31.70 28.60 30.07
TULER-GRU 42.61 57.95 35.22 32.69 33.91 40.85 57.31 29.52 27.80 28.64
TULER-LSTM-S 42.11 58.01 33.49 31.97 32.71 41.22 57.70 29.34 28.68 29.01
TULER-GRU-S 41.35 58.45 32.51 31.79 32.15 41.07 57.49 29.08 27.17 28.09
Bi-TULER 42.67 59.54 37.55 33.04 32.15 41.95 57.58 32.15 31.66 31.90
HTULER-L 43.89 60.90 35.95 34.32 35.12 43.40 60.25 34.43 33.63 34.02
HTULER-G 43.33 60.74 37.71 34.47 36.01 42.88 59.41 32.72 32.54 32.63
HTULER-B 44.21 62.28 36.48 33.51 34.93 44.50 60.93 34.89 34.46 34.67
TULVAE 44.35 64.46 40.28 32.89 36.21 45.40 62.39 36.13 34.71 35.41
TULAR-LSTM-M 48.74 70.02 45.45 40.73 42.95 47.47 67.61 41.20 38.69 39.91
TULAR-LSTM-A 48.42 70.02 45.42 40.06 42.57 47.79 67.70 40.26 39.22 39.73
TULAR-LSTM-D 48.00 68.65 47.17 41.38 44.08 47.26 67.08 38.65 38.72 38.69
TULAR-GRU-M 46.22 66.87 43.45 38.13 40.61 45.79 64.35 36.89 36.98 36.93
TULAR-GRU-A 46.22 69.28 40.58 40.16 40.37 46.26 66.29 36.86 37.96 37.40
TULAR-GRU-D 47.48 67.92 40.90 38.46 39.64 45.11 64.30 37.36 37.35 37.36
TULAR-BRNN-M 48.63 69.49 46.18 40.72 43.28 48.00 67.29 40.22 39.78 40.00
TULAR-BRNN-A 48.21 70.85 43.85 41.31 42.41 48.84 66.82 40.38 39.64 40.01
TULAR-BRNN-D 49.05 70.12 43.26 40.91 42.05 48.21 67.40 41.51 40.24 40.87

TULAR with BRNN and dot attention achieves the best results in terms of accuracy@1, yielding 10.59%, 8.78%, 16.12% improvements compared to
TULVAE for Acc@1, Acc@5 and macro-F1 metrics on Gowalla |112|. TULAR with BRNN and additive attention achieves the best results in terms of
accuracy@1, yielding 7.57%, 7.10%, 12.99% improvements compared to TULVAE for Acc@1, Acc@5 and macro-F1 metrics on Gowalla |112|.

TABLE IV: TULAR Performance Comparison on Brightkite

Method
Metric Acc@1 Acc@5 macro-P macro-R macro-F1 Acc@1 Acc@5 macro-P macro-R macro-F1

|U | = 34 |U | = 92
TULER-LSTM 48.26 67.39 49.90 47.20 48.51 43.01 59.84 38.45 35.81 37.08
TULER-GRU 47.84 67.42 48.88 46.87 47.85 44.03 61.36 38.86 36.47 37.62
TULER-LSTM-S 47.88 67.38 48.81 47.03 47.62 44.23 61.00 38.02 36.33 37.16
TULER-GRU-S 48.08 68.23 48.87 46.74 47.78 43.93 61.85 37.93 36.01 36.94
Bi-TULER 48.13 68.17 49.15 47.06 48.08 43.54 60.68 38.20 36.47 37.31
HTULER-L 49.44 71.13 51.51 47.31 49.32 45.26 63.55 41.61 38.13 39.79
HTULER-G 49.12 70.81 51.85 46.88 49.24 44.50 63.17 41.10 37.51 39.22
HTULER-B 49.78 70.69 52.45 47.98 48.90 45.30 63.93 41.82 39.32 38.60
TULVAE 49.82 71.71 51.26 46.43 48.72 45.98 64.84 43.15 39.65 41.32
TULAR-LSTM-M 52.86 74.11 51.19 49.40 50.28 58.45 76.58 56.56 52.99 54.72
TULAR-LSTM-A 53.85 75.69 50.84 48.32 49.55 56.32 75.41 56.09 51.06 53.46
TULAR-LSTM-D 53.16 75.59 48.69 48.62 48.66 58.04 75.11 56.33 52.75 54.48
TULAR-GRU-M 52.17 73.22 47.17 46.60 46.88 55.66 74.20 56.21 51.11 53.54
TULAR-GRU-A 52.56 72.92 52.97 49.08 50.95 55.61 74.35 54.17 50.72 52.39
TULAR-GRU-D 53.06 72.82 49.34 47.44 48.37 56.42 73.69 57.20 52.92 54.98
TULAR-BRNN-M 53.35 75.00 50.06 49.02 49.54 57.38 75.46 58.66 51.66 54.94
TULAR-BRNN-A 53.75 76.67 50.28 47.62 48.91 57.08 75.21 56.63 51.15 53.75
TULAR-BRNN-D 53.65 73.61 49.23 48.63 48.93 57.84 76.02 58.55 53.32 55.81

TULAR with BRNN and dot attention achieves the best results in terms of accuracy@1, yielding 8.08%, 5.55% and 1.70% improvements compared
to TULVAE for Acc@1, Acc@5 and macro-F1 metrics on Brightkite |34|. TULAR with BRNN and dot attention achieves the best results in terms of
accuracy@1 on Brightkite |92|, yielding 21.72%, 18.10% and 32.42% improvements compared to TULVAE for Acc@1, Acc@5 and macro-F1 metrics.

to drawing into new parameters. Multi based attention takes
the most time, dot-based attention takes the least time and
add-based attention in between. However, the consumption of
time is almost the same among the three attention mechanism.

VI. CONCLUSION

In this paper, we proposed TULAR, an attention based
recurrent neural networks framework for Trajectory-User Link
problem. We discovered that RNN based model could not
distinguish trajectories correctly when the trajectories are out
of length. A conception of trajectory semantic vector had
been proposed in the TULAR, which was used in measure
the effectiveness of the parts of original trajectories for user

linking. A lot of experiments have been conducted in real
world datasets for TULAR performance.

There were two aspects that we thought can improve TUL
performance: (1) Geospatial information should be taken into
consideration to reduce the number of user candidates. (2)
Users’ behavior preference should be taken into consideration
when linking trajectories to users. Those thoughts will be
confirmed in the future works.
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Fig. 2: Convergence comparison with different attention
scores. Accuracy@1 in 30 iterations on Gowalla |201| with
LSTM, GRU and BRNN are shown in the first line. Accu-
racy@1 in 30 iterations on Brightkite |92| with LSTM, GRU
and BRNN are shown in the second line.

Fig. 3: Training time comparison on different RNN variants.
The ordinate represent the training time within 30 iterations.
Those experiments were conducted on one GeForce GTX 1070
GPU with i7-6770 HQ CPU and 16G memory.
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