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Abstract. Nowadays, large quantities of advanced locating sensors have
been widely used, which makes it possible to deploy location-based ser-
vice (LBS) enhanced by intelligent technologies. Location prediction, as
one of the most fundamental technologies, aims to acquire possible loca-
tion at next timestamp based on the moving pattern of current trajecto-
ries. High accuracy of location prediction could enrich and increase user
experience of various LBSs and brings lots of benefits to service providers.
Lots of state-of-the-art research try to model spatial-temporal trajecto-
ries based on recurrent neural networks (RNNs), yet fails to arrive at
a practical usability. We observe that there exists two ways to improve
through attention mechanism which performs well in computer vision
and natural language processing domains. Firstly recent location pre-
diction methods are usually equipped with single-head attention mech-
anism to promote accuracy, which is only able to capture limited infor-
mation in a specific subspace at a specific position. Secondly, existing
methods focus on external relations between spatial-temporal trajecto-
ries, but miss internal relations in each spatial-temporal trajectory. To
tackle the problem of model spatial-temporal patterns of mobility, we
propose a novel Cooperative Attention Based location prediction net-
work using Internal-External trajectory dependencies correspondingly in
this paper. We also design and perform experiments on two real-world
check-in datasets, Foursquare data in New York and Tokyo cities. Evalu-
ation results demonstrate that our method outperforms state-of-the-art
models.

Keywords: Attention · Internal-external relations · Spatial-temporal
trajectory · Location prediction

1 Introduction

Nowadays, large quantities of various sensors (e.g., GPS-devices, radar system,
electronic toll collection, infrared distance meter, etc.) are deployed to track
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persons or vehicles, which makes a variety of location data accumulate steadily.
Fusing different kinds of location data for one object is the key to improve
relevant technologies in complex application scenarios. Location prediction, as
one of the most fundamental technologies, aims to acquire possible location at
next timestamp based on the moving pattern of current trajectories. In last
decades, it has already been applied broadly ranging from city management to
personal services. High accuracy of location prediction is fundamental to enrich
and increase user experience of various LBSs and brings lots of benefits to service
providers [10,11]. Therefore, the task to design best location prediction model
for various situations has attracted the attention of both academy and industry.

According to the architecture, existing location prediction methods can be
roughly divided into two categories: pattern-based and model-based. Pattern-
based methods [1,5,8] extract spatial-temporal patterns (e.g., sequential pat-
terns, frequent patterns) from historical movements firstly, which are used to
predict next location. Although pattern-based methods are commonly used, it’s
non-trivial to discover meaningful patterns which are important to the perfor-
mance [12]. Therefore, model-based methods [2,3,6,7], such as Markov model
and Recurrent Neural Network (RNN), are introduced to tackle this problem.
These model-based methods leverage sequential statistical models to capture the
transition regularities of movements. At present, RNN-based methods achieve a
state-of-the-art performance.

However, trajectories are too complex in some of the real-world scenarios.
In these scenarios, on one hand the sensing procedure could be sheltered or
disturbed, on the other the persons or vehicles with malicious purpose might
try to forge location data and avoid being tracked. Therefore, relying on only
short-range patterns or transition regularities might cause the huge error in pre-
diction and crash down the LBS systems. When we try to solve the challenge
with RNN, we observe that the receptive field of RNN is weak in capturing long-
range dependency due to how it models and optimizes. Hence until now, many
scholars continue to improve RNN-based methods to get better results in differ-
ent ways, such as, replacing basic RNN with long short-range memory (LSTM)
or gated recurrent neural networks (GRU) and adopting the encoder-decoder
architectures. However, the fundamental constraint of sequential computation
remains.

To overcome the constraints, recently scholars equip RNN with attention
mechanism to improve the ability of modeling sequence context, which is proved
to perform well in computer vision and natural language processing domains. Yet
we observe that there still exists two ways to improve. Firstly recent location
prediction methods are usually equipped with single-head attention mechanism
to promote accuracy, which is only able to capture limited information in a spe-
cific subspace at a specific position. Secondly, existing methods focus on external
relations between spatial-temporal trajectories, but miss internal relations in one
spatial-temporal trajectory.

Inspired by above observations, we proposed CABIN, a novel Cooperative
Attention Based location prediction network using Internal-External trajectory
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dependencies in this paper. Firstly, we transformed raw sparse trajectory data
into dense feature representation with a spatial-temporal feature disentangling
module. Secondly, we constructed our method based on pure attention, which is
able to seize not only external but also internal relations of each spatial-temporal
trajectory. Finally, we designed a cooperative attention module to effectively fil-
ter the current trajectory features with the historical spatial-temporal mobility
pattern from different representation subspaces at different positions. We con-
ducted thorough experiments on two public check-in datasets of the real world,
results showed that our method reaches a new state-of-the-art result in location
prediction task.

Our main contributions are summarized as follows:

– We introduced a novel complete Transformer network through introducing
a spatial-temporal feature disentangling module, which is a pure attention-
based Transformer network to predict next location based on historical and
current trajectories.

– We proposed a new cooperative attention module and added it to traditional
Transformer network to filter current trajectories based on historical ones,
which is able to capture trajectory information from different representation
subspaces at different positions.

– We evaluated our methods through extensive experiments on two public
check-in real-world datasets. Experimental results demonstrate that acc@1
of our method improves nearly 4.79% and 9.62% than the state-of-the-art
methods on the two datasets.

The rest of the paper is organized as follows. In Sect. 2, we introduce related
work of pattern-based methods, model-based methods and Attention mechanism.
Then our proposed method are detailed in Sect. 3. We conduct comparative
experiments and perform extensive analysis of experimental results in Sect. 4.
Finally, we introduce future work and conclude our paper in Sect. 5.

2 Related Work

2.1 Pattern-Based Methods

Pattern-based methods extract patterns (e.g., sequential patterns, frequent pat-
terns) from the law of historical movements first, and then use them to predict
the next location. Cheng et al. [1] focus on personalized point-of-interest (POI)
recommendation in location-based service and fuse matrix factorization with
geographical and social influence. WhereNext [8] is a classical pattern-based
method, building a decision tree named T-pattern Tree, which is learned from
the discovered patterns. The tree is then used to acquire the best matching path
to predict the next location. Periodica [5] is another one classical pattern-based
method. It uses reference spot to capture the reference location, and then uses
a probability model to characterize the periodic behaviors. During the process
of automatic pattern discovery, manual intervention is needed to judge effective-
ness, which is time-consuming and inefficient.
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2.2 Model-Based Methods

Model-based methods are introduced to tackle inherent problems of pattern-
based methods, and obtain a better performance than pattern-based in general.
Many methods have been proposed, such as hidden Markov models (HMM) [7]
and Recurrent Neural Network (RNN) based models [2,6]. Hidden Markov Model
(HMM) [7] is first used to model user’s historical trajectories, and then we predict
the next probable location by this trained HMM model. Meanwhile, a Spatial
Temporal Recurrent Neural Networks model (ST-RNN) [6] is proposed to model
the spatial and temporal contexts, and achieve the state-of-the-art results in the
location prediction task. Until now, RNN-based methods are the most popular.
Hence many scholars continue to improve the RNN-based method to get better
results in recent years, such as, DeepMove [2] replaces basic RNN with more
powerful GRU and extends GRU with attention mechanisms to get a higher
performance. Although RNN is designed to tackle timing problem and performs
well in sequence modeling, it is still weak and time-consuming in capturing long-
range dependency due to its modeling and optimization mechanism.

2.3 Attention Mechanism

Attention mechanisms induce conditional distributions over hidden feature rep-
resentation to compose a weighted normalized vector for feature importance
evaluation. It is widely used in many fields, for examples, image classification,
recommendation system, machine translation and location prediction. Armed
with attention mechanism, deep learning models obtain a boosting performance
and improvement on interpretability through visualizing attention matrix. For
RNN-based model, attention mechanism strengthens the ability in capturing
the long-range dependencies to some extent. Following the tremendous success
of attention mechanism, several variant have been proposed. Among them, self-
attention is extremely powerful in modeling the inherent relation between dif-
ferent elements in one sequence, making it suitable to perform feature combina-
tion and pattern exploration. Building on pure self-attention, Transformer [9] is
firstly proposed to address the translation tasks in Natural Language Processing
(NLP). In this paper, we adapt Transformer with cooperative attention module
to model the mobility patterns in trajectory data.

3 Proposed Method

As shown in Fig. 1, Our method consists of two core parts, Spatial-Temporal
Feature Disentangling and Attention-based Model. In former, we introduced a
spatial-temporal feature disentangling module to enable Transformer network
to capture spatial and temporal information from trajectories. In latter, we
equipped pure attention-based Transformer network with cooperative attention
module to acquire the internal and external historical and current patterns of
mobility from different representation subspaces at different positions. Due to
that we trained our method in an end-to-end manner, hand-crafting features are
no longer needed.
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Fig. 1. Architecture of our model.

3.1 Spatial-Temporal Feature Disentangling

An embedding module is needed to transform high dimensional discrete raw
features into low dimensional dense representation, which is more semantic
expressing and computable. There are multiple factors that may exert influ-
ence on mobility transitions, such as exact time of day and location. It is nec-
essary to integrate all these meaningful information together to describe target
objects’ movements. Therefore, we designed a spatial-temporal feature disentan-
gling module to jointly embed the spatial-temporal features into dense represen-
tations.

Embedding Strategy. In RNN, the recurrence mechanism endows model with
auto-regressive essence, making it naturally temporal perceptive. However, in
pure attention-based Transformer, in order to make the model to use the order of
the sequence, positional encoding is added to inject some information about the
relative or absolute position of the token in the sentence. In vanilla Transformer,
the positional encoding is designed as below:

PE(pos,2i) = sin(pos/100002i/dmodel) (1)

PE(pos,2i+1) = cos(pos/100002i/dmodel) (2)

where pos is the position and i is the dimension. dmodel is the dimensionality of
input and output. More details could be found in Transformer [9].

Considering spatial-temporal trajectories have natural time attribute which
is more accurate to express the position of the input token, we replaced position
encoding with temporal feature encoding in CABIN. The procedure of embed-
ding temporal feature is as follows. Firstly, we divided temporal feature into
two parts, workday and weekend. The workday is denoted as {0, 1, ..., 23}, and
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the weekend is denoted as {24, 25, ..., 47}. Secondly, we translated temporal fea-
ture into one-hot vectors. And finally, we mapped the high dimensional sparse
one-hot vectors to low dimension dense representation.

The spatial information is the carrier of semantics in mobility of trajectories.
In order to distinguish them from temporal information, we used another matrix
to embed spatial information into a different semantic space.

Integration Strategy. We considered a frequently appearing operation to inte-
grate features carrying different semantic information. As shown below:

xvanilla = Espatial + Etemporal (3)

the Espatial and Etemporal separately denote the dense representation after
embedding of spatial and temporal features. The “add” operation assumes that
these two features have same dimension. However, this is not always the case. In
location prediction problem settings, input features are specific in two aspects.
1) spatial and temporal information express different meanings, which makes it
inappropriate to embed them into the same hidden space. 2) The capacity of
semantic space that spatial and temporal information require is vastly differ-
ent, because the range of temporal information is limited in a small number of
positive integers.

Simply adding these two different embeddings may confuse the model and be
harmful for further feature extraction. So here we replaced the “add” operation
with the “concatenate” operation. As stated below:

x = Concat(Espatial, Etemporal) (4)

3.2 Attention-Based Model

The original trajectories are divided into history ones and current ones. Seizing
the patterns of mobility from trajectory data is the key to accurately predicting
next location. Lots of state-of-the-art research try to equip RNN with single-
head attention, which captures limited external relations between trajectories in
a specific subspace at a specific position. To overcome the shortage, our method
equipped pure attention-based Transformer network with cooperative attention
module to seize the internal and external historical and current patterns of mobil-
ity from different representation subspaces at different positions.

Historical and Current Patterns Extraction. Transformer [9], a new net-
work architecture, eschews recurrence and relies entirely on attention mechanism
to draw global dependency between features in different positions. The most
appealing strength of Transformer is that it breaks down the auto-regressive
assumption to obtain the ability of highly parallel computation and one-hop fea-
ture correlation: input elements interact with each other simultaneously without
regard to their distance. As a powerful model, Transformer is firstly designed to
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address the translation tasks in Natural Language Processing (NLP). Recently,
it is proved that the architecture and capacity of Transformer makes it suitable
to process massive data, such as images and videos. Considering that attention
mechanism is suitable to catch internal and external spatial-temporal patterns
of mobility, we designed our method based on Transformer with encoder-decoder
architecture.

Each layer in Transformer Encoder module is composed of two sub-layers,
multi-head self-attention mechanism (MA) and position-wise feed-forward net-
work (FFN). And a residual connection is employed around each of the two
sublayers, followed by layer normalization (LN). After N layer’s feature extrac-
tion, we obtained the output ON

TE as final historical pattern representations,
here the right corner mark TE denotes the “Transformer Encoder”.

Each layer in Transformer Decoder module is composed of three sub-layers,
masked multi-head self-attention mechanism (MMA), multi-head self-attention
mechanism (MA), and position-wise feed-forward network (FFN). Similar to
Transformer encoder, a residual connection is employed around each of the two
sublayers, followed by layer normalization (LN). The difference lies in the mask
mechanism. The mask signal is designed to ensure that the prediction for cur-
rent trajectory point depends only on previous trajectory points. After N layer’s
feature extraction, we obtained the output ON

TD as final current pattern repre-
sentations, here the right corner mark TD denotes the “Transformer Decoder”.

Cooperative Attention Feature Filtering and Prediction. We designed
a cooperative attention feature filtering module, which adapts multi-head atten-
tion, to effectively filter the current trajectory features with the historical spatial-
temporal mobility pattern from different representation subspaces at different
positions. Cooperative attention module regards the output of Transformer
encoder, i.e. ON

TE , as historical pattern representations, the output of Trans-
former decoder, i.e. ON

TD as current movements representations.
The cooperative attention module is formulated as below:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)WO (5)

headi = Attention(QWQ
i ,KWK

i , V WV
i ) (6)

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (7)

where h denotes the number of parallel attention layers, We got the historical
patterns filtered by current features as below:

OCA = MultiHead(ON
TE , O

N
TD, ON

TD) (8)

where the right corner mark “CA” denotes “cooperative attention”.
After multi-head attention module, we obtained the probability of each POI

at next time under the given historical and current trajectory as below:

Prob = softmax(OCA) (9)
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4 Experiments

We conducted a series of experiments and compared our method, CABIN, with
LSTM, DeepMove, DeepMove* (a variety of DeepMove), and CABIN* (a variety
of CABIN) on two public Foursquare check-in datasets.

4.1 Dataset

In our experiments, we followed the datasets, preprocessing of datasets and
data splitter setting as same as previous related work as described in [2,4].
We evaluated our model on two public Foursquare check-in datasets [13], which
is collected in New York (NYC) and Tokyo (TKY) from Foursquare API for
about 10 months, ranging from Apr. 2012 to Feb. 2013. Each of them contains
8 columns of data (i.e. User ID, Venue ID, Venue category ID, Venue category
name, Latitude, Longitude, Time zone offset in minutes and UTC time). Here we
used former 3 columns because the others carry more textual information than
spatial and temporal information. In this paper, we only considered modeling
trajectory data and leave this textual information to our future work.

We segmented the original trajectories into several sessions based on the time
interval between two neighbor records. We chose 72 h as the default time interval
threshold. Further, we filtered out the sessions with record less than 5 and users
with session less than 5. In following experiments, for each user, we take the first
80% check-in data as the training set, the other 20% data as the evaluation set.
The overall statistics of original and processed datasets is shown in Table 1.

Table 1. The overall statistics of datasets.

Dataset Type Raw Cleaned

NYC Users 1083 935

Locations 38333 13962

TKY Users 2293 2108

Locations 61858 21395

4.2 Baselines

To evaluate the performance of our method, we compared CABIN with several
representative methods for location prediction:

– LSTM [3]: Long short-term memory is an adaptive version of vanilla recurrent
neural network. Equipped with gated mechanism, LSTM is more effective in
modeling longer sequence. It represents a class of auto-regressive methods.

– DeepMove [2]: It’s a state-of-the-art method for next location prediction. It
adapts the ST-RNN with a historical attention module.
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– DeepMove*: It’s a variety of DeepMove, replacing single attention module
with multi-head attention.

– CABIN*: It’s a variety of our method, discarding cooperative attention mech-
anism.

4.3 Analysis

Overall Performance. The overall performance comparison on two public
check-in datasets evaluated by acc@k,ADE@k are illustrated in Table 2.

Table 2. Results for NYC and TKY dataset. The results with the best performance
are marked in bold.

Dataset Method acc@1 acc@5 acc@10 ADE@1 ADE@5 ADE@10

NYC LSTM 0.1557 0.3432 0.4068 4760.1629 1589.4411 1054.3837

DeepMove 0.1839 0.3959 0.4480 3780.7436 1156.7545 768.2902

DeepMove* 0.1958 0.3981 0.4532 3722.8963 1149.0330 765.6733

CABIN* 0.1970 0.4092 0.4699 3630.3077 1129.0954 728.4006

CABIN 0.2016 0.4103 0.4764 3584.3926 1081.0376 674.9032

TKY LSTM 0.1426 0.3024 0.3624 6108.5688 2556.6697 1799.951

DeepMove 0.1565 0.3168 0.3772 6030.0399 2157.6815 1437.6740

DeepMove* 0.1594 0.3235 0.3836 5915.9244 2109.9256 1383.7364

CABIN* 0.1618 0.3337 0.3956 5893.2292 2090.1591 1371.0090

CABIN 0.1640 0.3339 0.3982 5868.6996 2071.2962 1363.8166

We can see that CABIN* and CABIN both outperforms all baselines in all
evaluation metrics. Moreover, compared with the state-of-the-art DeepMove,
our method CABIN gains a relative performance of 9.62% acc@1 in NYC
dataset, and 4.79% acc@1 in TKY dataset. From evaluation results, we can
conclude that multi-head self-attention models and cooperative attention mech-
anism both give obvious advantage to our method. The former succeeds in cap-
turing external and internal mobility patterns simultaneously, while the latter is
able to draw global dependency between historical and current spatial-temporal
information effectively. CABIN* has poor results compared to CABIN, which
suggests that there cooperative attention mechanism indeed seizes the relation
between historical and current spatial-temporal trajectories.

In general baselines, DeepMove, as an adaption of recurrent neural network,
equipped with a single historical attention module, shows a boosting perfor-
mance compared with a vanilla LSTM, which suggests that there indeed exists
historical mobility periodicity and that attention mechanism can promote the
performance in seizing spatial-temporal contexts. DeepMove* performs bet-
ter than vanilla DeepMove in both two datasets due to the powerful ability
of multi-head attention, which captures trajectory information from different
representation subspaces at different positions.
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Time Consumption The time consumption comparison results are presented in
Table 3. We chose two frequently-used standards to evaluate the time consump-
tion: 1) training time spent on every epoch. 2) the number of epoch when model
converges.

Table 3. Time consumption of different methods. “evaluation” denotes evaluation
standards. “time” denotes training time per epoch (min). “converge” denotes the num-
ber of epoch when model converges.

Dataset Evaluation LSTM DeepMove DeepMove* CABIN* CABIN

NYC Time(min) 0.583 70.921 5.058 7.794 9.277

Converge(epoch) 19 20 22 16 17

TKY Time(min) 1.568 216.955 16.147 22.330 28.928

Converge(epoch) 26 29 22 16 18

It is clear that LSTM has advantage of high training speed among all
methods, this is because it is a simple model without encoder-decoder archi-
tecture and attention mechanism. DeepMove uses recurrent models with time-
consuming point-wise product-based attention mechanism to model long trajec-
tory sequence, resulting in an extremely slow training process and relatively slow
convergence.

Compared with DeepMove, CABIN is much time-saving mainly due to
replacing point-wise product-based attention with scaled dot-product based
attention. To prove the aforementioned point, we carried out comparative exper-
iment between DeepMove and DeepMove*. The only difference between
DeepMove and DeepMove* is that the former uses point-wise product-based
attention, while the latter replaces it with multi-head attention based on scaled
dot-product attention. And the DeepMove* has a sharp drop in time consump-
tion compared with DeepMove.

We can also see that CABIN is nearly two times of time consumption com-
pared with DeepMove*, this is because CABIN uses more than one module
armed with attention mechanisms. To prove the aforementioned point, we car-
ried out comparative experiment between CABIN and CABIN*. We can see
CABIN* costs less time and epochs due to that it uses no cooperative-attention
module compared to CABIN.

Feature Disentangling Module Analysis. To validate the rationality of our
spatial-temporal feature disentangling module, we conducted experiments with
vanilla feature embedding, whose feature embedding adopts positional encod-
ing and “add” integration strategies. The results are shown in Table 4. We can
see that the performance of our spatial-temporal feature disentangling module
is almost the same to the vanilla feature embedding in both NYC and TKY
datasets. We inferred that the reason of the phenomenon is that the regular loss
of location prediction models focuses only on next location, ignoring the temporal



CABIN 531

Table 4. Results for NYC and TKY dataset. The results with the best performance
are marked in bold.

Dataset Method acc@1 acc@5 acc@10 ADE@1 ADE@5 ADE@10

NYC Ours vanilla 0.2012 0.4002 0.4659 3585.1205 1120.7728 728.6527

Ours 0.2016 0.4103 0.4764 3584.3926 1081.0376 674.9032

TKY Ours vanilla 0.1645 0.3319 0.3927 5869.0309 2089.3468 1393.8850

Ours 0.1640 0.3339 0.3982 5868.6996 2071.2962 1363.8166

information. Due to that, the spatial-temporal trajectory can be viewed from two
aspects with no difference, one is original spatial-temporal sequence, the other
is ordered temporal sequence. Our spatial-temporal feature disentangling mod-
ule captures the inner relation of both spatial and temporal from the aspect
of original spatial-temporal trajectory, while vanilla feature embedding module
captures just temporal relations from the aspect of ordered temporal sequence.

In a nutshell, our method, CABIN, is far more efficient than DeepMove.
Although it is not as far as DeepMove* in time consumption, it costs less
epochs to reach a higher accuracy. What’s more, the evaluation in two real-
world datasets show that CABIN is with good robustness.

5 Conclusion

In this paper, we focused on next location prediction problem, which is of tremen-
dous importance for advanced location-based services. We proposed CABIN, a
novel Cooperative Attention Based location prediction network using Internal-
External trajectory dependencies, which enjoys two novel characteristics com-
pared to previous methods: 1) Cooperative attention module is able to capture
trajectory information from different representation subspaces at different posi-
tions, which is better and faster than single point-wise product attention. 2)
Our method predicts more accurately and efficiently than existing RNN-based
methods proved by experimental results on real-world datasets.

Considering that the check-in data is relatively sparse, we plan to extend the
problem into other area, such as datasets of dense trajectory like T-drive taxi
datasets, to improve our method robustly.
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