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Abstract—Multivariate Time Series (MTS) analysis is crucial to
understanding and managing complex systems, such as traffic and
energy systems, and a variety of approaches to MTS forecasting
have been proposed recently. However, we often observe incon-
sistent or seemingly contradictory performance findings across
different studies. This hinders our understanding of the merits
of different approaches and slows down progress. We address the
need for means of assessing MTS forecasting proposals reliably and
fairly, in turn enabling better exploitation of MTS as seen in differ-
ent applications. Specifically, we first propose BasicTS+, a bench-
mark designed to enable fair, comprehensive, and reproducible
comparison of MTS forecasting solutions. BasicTS+ establishes
a unified training pipeline and reasonable settings, enabling an
unbiased evaluation. Second, we identify the heterogeneity across
different MTS as an important consideration and enable classifi-
cation of MTS based on their temporal and spatial characteristics.
Disregarding this heterogeneity is a prime reason for difficulties in
selecting the most promising technical directions. Third, we apply
BasicTS+ along with rich datasets to assess the capabilities of more
than 30 MTS forecasting solutions. This provides readers with an
overall picture of the cutting-edge research on MTS forecasting.
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I. INTRODUCTION

S ENSORS are increasingly being deployed in complex, real-
world systems. Readings from such sensors form Multivari-

ate Time Series (MTS) that in turn are used for understanding and
operating the host systems. For instance, the PEMS [1] dataset
consists of traffic data from critical locations in a transportation
system, and the Electricity [2] dataset records the electricity
consumption by key clients in a power system. Consequently,
MTS forecasting has become fundamental to understanding and
operating complex real-world systems, enabling applications
such as traffic management [3], emergency management [4],
and resource optimization [5].

MTS data analysis must consider both the temporal and spatial
aspects of the data [6], [7]. The temporal aspect often encom-
passes complex dynamics, including non-stationarity, period-
icity, and randomness. The spatial aspect concerns interdepen-
dencies among time series, known as spatial dependencies [6] or
cross-dimension dependencies [8], which can affect prediction
accuracy substantially. Effective modeling the complex tempo-
ral and spatial aspects of MTS is a key challenge, which also
has been addressed in many studies.

Recent MTS forecasting solutions have been based pre-
dominantly on deep learning [6], [7], [9], [10], [11], [12].
These solutions often address two prominent and more specific
problems, namely Long-term Time Series Forecasting (LTSF)
and Spatial-Temporal Forecasting (STF), in which the mod-
eling of temporal and spatial patterns in the data are essen-
tial. LTSF solutions are concerned with long-term forecast-
ing and often employ advanced neural networks like Trans-
formers [13] to model long-term temporal dependencies. No-
table solutions include efficient Transformers [7], [14], [15],
series-level correlations [9], frequency-based solutions [10], and
Transformers utilizing patched time series [8], [16]. In contrast,
STF solutions aim to improve prediction by effectively modeling
spatial correlations. The prevalent approach is to combine Graph
Convolution Networks (GCN) [17] with different sequence
models [18], [19] to form Spatial-Temporal Graph Neural Net-
works (STGNN). Examples include combining GCNs with
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Recurrent Neural Networks (RNN) [6], Convolutional Neural
Networks (CNN) [11], and Attention mechanism [20], [21]

While proposals of new solutions include experimental stud-
ies, such studies are at times incomparable or seemingly
inconsistent. This causes uncertainty on which directions to take
and impedes progress towards better solutions. As an example
of the current state of affairs, some studies [22], [23], [24],
[25] report poor performance of the key baselines DCRNN [6]
and GWNet [11], at up to 33% lower than the performance we
reproduce. Next, proposals of LTSF solutions [7], [8], [9], [10]
usually report evaluations solely using metrics like MAE and
MSE based on normalized time series, making prediction errors
seem to be very low. An alternative is to perform evaluations
on re-normalized data and to report more metrics like MAPE
and WAPE, which are not affected by the range of data. Issues
such as these prevent researchers from judging the strengths and
weaknesses of different solutions.

Further, some studies present seemingly contradictory
findings in selecting which technical directions to take
when pursuing better solutions to LTSF and STF. In rela-
tion to the temporal aspect, i) the effectiveness of advanced
neural networks has been debated [7], [16], [26], [27]. One
study [26] finds that LTSF-Linear, which employs a simple linear
layer, significantly outperforms Transformer-based models [7],
[9], [10], [15], and the study concludes that Transformer-based
architectures are not as effective as previously claimed. How-
ever, subsequent studies [16], [27], [28] find that advanced neural
networks outperform LTSF-Linear. We find that the difference
in model size between these approaches makes it difficult to
determine their relative effectiveness. In relation to the spatial
aspect, ii) the necessity of GCNs has been questioned [29], [30].
While STGNNs have brought significant improvements, many
recent studies highlight the inefficiency of STGNNs and explore
alternative means of modeling the dependencies among time
series, e.g., normalization [30], [31]. The success of these non-
GCN methods indicates the need for a deeper understanding of
spatial dependencies and for insight into when these alternative
methods are effective.

To mitigate issues such as those exemplified above and to
offer insight into the advance achieved, we contribute a com-
prehensive analysis and comparison of both MTS forecasting
datasets and models. First, as we believe that providing a fair,
comprehensive, and reproducible benchmark for MTS forecast-
ing can mitigate the current state of affairs and enable progress,
we introduce BasicTS+, a benchmark for studying and compar-
ing MTS forecasting solutions. BasicTS+ establishes a unified
training pipeline and reasonable evaluation settings. The former
resolves inconsistent performance issues caused by unique data
and experimental setups in previous studies while the latter
enables a more intuitive evaluation of prediction errors. Overall,
BasicTS+ facilitates a fair, comprehensive, and reproducible
evaluation of over 30 popular MTS forecasting solutions on 20
commonly used datasets.1

1Due to space limitations, not all baselines and datasets are presented in this
paper.

TABLE I
INCONSISTENT PERFORMANCE OF GWNET AND DCRNN IN HIGHLY CITED

PAPERS

Second, we address the problem of selecting an appropri-
ate technical approach by studying the impact of the het-
erogeneity across MTS datasets. We use heterogeneity to re-
fer to completely different patterns observed across different
MTS datasets. In the temporal aspect, we classify datasets
into those with stable patterns, significant distribution drift,
and unclear patterns. In the spatial aspect, we find that spa-
tial sample indistinguishability is a key concept and partition
datasets into those with and without significant spatial sample
indistinguishability. Experimental studies show that previous
conclusions are valid only for certain types of data. For example,
basic neural networks [26] only outperform advanced neural
networks [7], [9], [10] on datasets without stable temporal
patterns, and approaches for modeling spatial dependencies,
such as GCN-based approaches, are only effective on datasets
with significant spatial sample indistinguishability. We find that
blindly adopting conclusions from previous studies can lead
researchers to make misguided inferences.

Moreover, by using BasicTS+ with heterogeneous datasets,
we conduct an exhaustive analysis and comparison of popular
solutions. Initially, we discuss how to design or select MTS
prediction solutions for a given MTS dataset, as well as how to
choose suitable datasets for evaluating a given MTS forecasting
solution. Subsequently, we present detailed experimental results
on the performance and efficiency of popular solutions across
comprehensive datasets, shedding light on the advancements
made. The objective of these results and discussions is to ac-
celerate progress and facilitate researchers in drawing more
reliable conclusions. Additionally, we highlight directions that
deserve more attention. In summary, we make the following
main contributions:
� We present BasicTS+, the first benchmark specifically

designed for fair comparison of MTS forecasting solutions,
especially both STF and LTSF solutions. BasicTS+ facili-
tates evaluation of over 30 popular models on 20 datasets
to address the seemly inconsistent performance findings.

� We identify heterogeneity among MTS datasets as a key
challenge, and classify datasets based on temporal and spa-
tial characteristics. We find that neglecting heterogeneity
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is a cause of difficulties in selecting technical directions,
and that previous conclusions apply only to certain types
of data.

� We conduct an extensive analysis and comparison of pop-
ular models using BasicTS+ together with rich heteroge-
neous datasets. The findings offer valuable insight into the
progress already made, aiding researchers in choosing ap-
propriate solutions or datasets, and drawing more reliable
conclusions.

The paper is organized as follows. Section II provides dis-
cussions of related work on LTSF, STF, and MTS forecast-
ing benchmarking. Section III covers preliminaries and essen-
tial definitions. Section IV presents the BasicTS+ benchmark.
Section V then delves into the heterogeneity among MTS
datasets, and provides hypotheses for explaining seemingly
contradictory findings. Section VI reports on the application
of BasicTS+ to popular models and provides new insights.
Section VII concludes the paper.

II. RELATED WORK

We cover studies related to LTSF and STF, which are the
two most prominent topics in recent MTS forecasting studies.
We present their goals, techniques, and related open issues.
Furthermore, we cover existing MTS benchmarking studies.

A. Long-Term Time Series Forecasting

To achieve accurate long-term time series forecasting [32],
studies concentrate on capturing the temporal patterns in MTS
data, and have proposed methods to efficiently and effectively
incorporate longer-term historical information. For example,
forecasting future electricity demand over several months or
even years in power systems is a typical application scenario,
where such predictions are crucial for resource optimization and
strategic planning.

Early studies typically propose traditional statistical meth-
ods (e.g., ARIMA [33] and ETS [34]) or machine learning
methods (e.g., GBRT [35] and SVR [36]). These methods often
struggle to handle high non-linearity well, and they typically
rely heavily on stationarity-related assumptions [3]. With the
advent of deep learning [37], [38], studies have embraced more
powerful and advanced neural architectures for time series mod-
eling, such as TCN [19], LSTM [39], and Transformer [13].
Among these, Transformer-based models have garnered increas-
ing attention. Informer [7] proposes a ProbSparse self-attention
mechanism and distilling operation to address the quadratic
complexity of the Transformer, leading to significant perfor-
mance improvements and being recognized as a milestone in
LTSF (AAAI 2021 best paper). Subsequently, Autoformer [9]
features an efficient auto-correlation mechanism to discover and
aggregate information at the series level, while FEDformer [10]
proposes an attention mechanism with low-rank approximation
in frequency and a mixture of experts to control distribution
shifts. Additionally, Pyraformer [15] designs pyramidal atten-
tion to effectively describe short and long temporal dependencies
with low complexity. Overall, the Transformer architecture is

widely regarded as one of the most effective and promising
approaches for MTS forecasting.

However, a recent study proposes LTSF-Linear [26] and
questions the effectiveness of Transformer architectures. LTSF-
Linear employs a simple linear layer and outperforms all the
earlier models. It carefully examines every key components of
Transformers and concludes that they are ineffective at time
series forecasting. This conclusion has subsequently been chal-
lenged by studies [16], [27], [28] that employ advanced neural
networks to outperform LTSF-Linear. Nevertheless, considering
the substantial difference in model size and the small difference
in predictive performance, understanding fully the effectiveness
of advanced models remains challenging. Furthermore, more
exploration is required to understand why a simple linear model
can achieve state-of-the-art performance.

B. Spatial-Temporal Forecasting

In contrast to LTSF, spatial-temporal forecasting must con-
tend with not only temporal dynamics in time series but also
dependencies among time series. A prime example of this is in
traffic management, where predicting future conditions requires
data from multiple traffic sensors, clearly highlighting the spatial
dependencies among these sensors. Consequently, considerable
research has been devoted to effectively capture and model these
spatial and temporal patterns.

Early deep learning approaches often employ CNNs to pro-
cess spatial information and combine CNNs and RNNs [2],
[40], [41]. However, as the relationships among time series are
usually non-Euclidean, grid-based CNNs may not be optimal
for handling spatial dependencies. With the development of
GCNs [17], [42], STGNNs [6], [12] have gained increased
attention. STGNNs utilize GCNs to model spatial dependencies
based on pre-defined prior graphs, and further combine them
with sequential models [13], [18], [19]. For example, models like
DCRNN [6], ST-MetaNet [43], and DGCRN [44] incorporate
GCNs with RNNs [18] and their variants, and then predict
step by step following the seq2seq [39] architecture. Graph
WaveNet [11], STGCN [12], and Auto-DSTSGN [45] integrate
GCNs with gated TCNs and their variants to facilitate paral-
lel computation. Futhermore, attention mechanisms are used
widely in STGNNs, such as GMAN [20], ASTGNN [46]. In
addition, neural architecture search solutions [45], [47] have also
received widespread attention. However, many recent studies
argue that the pre-defined prior graph might be biased, incorrect,
or even unavailable in many cases. Thus, they propose to jointly
learn the graph structure (i.e., a latent graph) and optimize
STGNNs, e.g., AGCRN [48], MTGNN [49], StemGNN [23],
GTS [50], DFDGCN [51], and STEP [52].

However, both prior graph-based STGNNs and latent graph-
based STGNNs are usually have a complexity ranging from
O(N2L) to O(N2L2) due to the graph convolution operation,
where N is the number of time series and L is the length
of a time series. Consequently, recent studies [53], [54] have
questioned the necessity of STGNNs [29], [31], [55] and have
explored alternative techniques [30], [31], [56]. For instance,
STNorm [31] introduces spatial-temporal normalization, and
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STID [30] implements a simple yet effective spatial-temporal
identity attaching approach. These solutions achieve similar
prediction performance as STGNNs but with significantly higher
efficiency. The success of these non-GCN solutions highlights
the need for a deeper understanding of spatial dependencies and
when and how these solutions are effective.

C. MTS Forecasting Benchmarking

Several benchmarking studies have been devoted to MTS
forecasting and associated downstream tasks. For example,
studies like DGCRN [44], LibCity [57], DL-Traff [58], and
our previous work BasicTS [59], use the benchmarks to ad-
dress STF-based downstream tasks, e.g., urban spatial-temporal
forecasting [60]. Similarly, the studies that contribute LTSF-
Linear [26] and TimesNet [28] propose benchmarks for LTSF.
However, these benchmarks have several limitations. First, they
only cover some of the research in either STF or LTSF, and can-
not address comprehensively the temporal and spatial aspects of
MTS. Second, many of them lack a unified pipeline and instead
train each baseline individually with a unique pipeline, which
may lead to unfairness. Third, these benchmarks are incapable of
covering adequately the issues related to the different technical
approaches, to contending with the temporal and spatial aspects
of MTS forecasting.

Notably, the motivation and contribution of this study signifi-
cantly differ from [59]. The focus of this study is to reliably and
fairly evaluate MTS forecasting solutions, reveal the heterogene-
ity across MTS datasets, and address seemingly inconsistent
findings in existing studies. This aims to enhance the utiliza-
tion of MTS in various applications rather than solely propos-
ing benchmarks, surpassing mere software-level contributions.
Moreover, even from a software perspective, BasicTS+ has been
refactored to adapt and apply to both STF and LTSF tasks
(whereas BasicTS [59] is designed only for STF). BasicTS+
also incorporates more extensible features.

III. PRELIMINARIES

We define key concepts and the forecasting task.
Definition 1: Multivariate Time Series. A multivariate time

series includes multiple time-dependent variables. It can be
expressed as a matrix X ∈ RT×N , where T is the number of
time steps and N is the number of variables. We additionally
denote the data in time series i ranging from t1 to t2 as Xi

t1:t2
.

Definition 2: Multivariate Time Series Forecasting. Given
historical data X ∈ RTh×N from the past Th time steps, mul-
tivariate time series forecasting aims to predict Y ∈ RTf×N of
the Tf nearest future time steps.

IV. BENCHMARK CONSTRUCTION

We present BasicTS+, a benchmark designed for fair, com-
prehensive, and reproducible evaluation of MTS forecasting
solutions, including both STF and LTSF solutions.

A. Unified Training Pipeline

We proceed to delve into the root causes of seemingly incon-
sistent performance findings and propose in response a unified

training pipeline, thereby enabling fair comparison of forecast-
ing models.

1) Inconsistent Forecasting Performance: The inconsisten-
cies imply that the forecasting performance of the same solu-
tion exhibits notable variations across experimental studies in
different papers, even when on the same dataset and with the
same experimental settings. To illustrate this, Table I compiles
performance findings from studies in a range of papers for two
solutions that are often used as baselines: DCRNN [6] and
Graph WaveNet [11], on PEMS04 and PEMS08 datasets. All
referenced papers employ an identical experimental setup, i.e.,
they utilize the last 12 time steps to predict the subsequent 12, and
they report MAE, RMSE, and MAPE results for the prediction.
Each row in the table thus presents performance findings for
Graph WaveNet (GWNet in short) or DCRNN as reported in
experimental studies in different papers.

We can see a considerable performance variation for each
solution across the different papers. We also note that GWNet
and DCRNN provide publicly available source code. As such,
this variation is likely due to the varying training pipelines
employed in the different studies. Furthermore, our benchmark
yields markedly improved performance compared to the re-
sults reported in the papers, with a maximum gap of 33%
(MAE of GWNet on PEMS04). To reduce spurious varia-
tions such as those just reported, we conduct a comprehen-
sive analysis of existing codebases, and identify three primary
sources of spurious variations: data processing, training con-
figurations, and evaluation implementation. These aspects are
often overlooked, although they influence evaluation results
substantially.
� Data Processing: A crucial step in the learning or infer-

ence process involves normalizing raw time series data.
Common approaches include min-max normalization and
z-score normalization, each exerting varying effects on
prediction performance. For example, some studies [46]
employ min-max normalization, whereas most studies usu-
ally adopt z-score normalization.

� Training Configurations: Training configurations include
optimization strategies and various training tricks. Differ-
ent setups have substantial impact on the optimization. For
example, most studies [3], [6], [11], [52] employ masked
MAE for model training, which excludes abnormal values
that may affect predictions for normal values adversely.
In contrast, some studies [24], [25] adopt naive MAE as
their optimization function, which tends to yield inferior
results. Further, the incorporation of training tricks, such
as gradient clipping and curriculum learning, may also
influence performance significantly [3].

� Evaluation Implementation: While metrics have precise
definitions, their implementations can vary across studies,
including aspects such as handling outliers, and mini-batch
computations [50]. This difference results in significant
deviations between testing and actual performance.

2) Implementation of BasicTS+: BasicTS+ introduces a uni-
fied training pipeline, as depicted in Fig. 1. This mainly in-
corporates unified dataloader, runner, and evaluation compo-
nents to address the identified sources of spurious performance
variations. The unified dataloader is equipped with z-score
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Fig. 1. Architecture of BasicTS+.

normalization as the default choice, which generally yields
superior performance. Additionally, it adds external temporal
features to the raw data such as time-of-day and day-of-week
attributes. The unified runner controls the entire training, valida-
tion, and testing procedure. By default, we employ masked MAE
as the loss function, which typically outperforms alternatives
like naive MAE and MSE. Moreover, the unified runner inte-
grates commonly-used training tricks like curriculum learning
and gradient clipping. Lastly, the unified evaluation component
provides standard implementations of metrics including MAE,
RMSE, MAPE, WAPE, MSE, and their masked versions. The
three components form the foundation that enables BasicTS+
to support fair analyses and comparisons. Given a model that
conforms to the standard model interface, BasicTS+ can pro-
duce evaluation results for that model. Furthermore, BasicTS+
offers many extensibility features, such as a logging system,
customizable losses and metrics, and compatibility with diverse
devices.

B. Evaluation Settings

Evaluation results should be presented in a clear and intuitive
manner. In LTSF, many studies adopt metrics such as MAE and
MSE and report the prediction performance based on normalized
data (z-score normalized). However, MAE and MSE represent
absolute errors that can be influenced significantly by the range
of the data, rendering them less intuitive for interpretation.
Additionally, evaluating prediction performance on normalized

TABLE II
EVALUATION ON NORMALIZED AND RE-NORMALIZED DATA

data can yield seemingly very low prediction errors, potentially
misleading readers unfamiliar with the details. Thus, some ap-
proaches to reporting prediction performance make it difficult
for readers to judge whether the prediction performance of the
model is satisfactory.

We suggest a practical approach: evaluating on re-normalized
data and incorporating additional metrics such as MAPE and
WAPE. The performance of important LTSF models on ETTh1
and ETTh2 datasets with normalization and re-normalization
are summarized in Table II. We can see that the prediction
performance appears less satisfactory on the re-normalized data
when considering the high MAPE and WAPE values, in contrast
to the seemingly low MAE and MSE values obtained on the
normalized data.

In summary, our evaluation is conducted on re-normalized
data, employing metrics such as MAE, RMSE, MAPE, and
WAPE. Assuming Ω represents the indices of all observed
samples, yi denotes the ith actual sample, and ŷi denotes the
corresponding prediction, these metrics are defined as follows.

MAE(y, ŷ) =
1

|Ω|
∑
i∈Ω

|yi − ŷi|,

RMSE(y, ŷ) =

√
1

|Ω|
∑

i∈Ω(yi − ŷi)2

MAPE(y, ŷ) =
1

|Ω|
∑
i∈Ω

∣∣∣∣yi − ŷi
yi

∣∣∣∣ ,
WAPE(y, ŷ) =

∑
i∈Ω |yi − ŷi|∑

i∈Ω |yi| . (1)

The MAE and RMSE metrics quantify the prediction accuracy,
while MAPE and WAPE serve to eliminate the influence of
data units. Additionally, for the M4 dataset, we adopt sMAPE,
MASE, and OWA. For brevity, we omit their formulations and
refer interested readers to the literature [64].

V. HETEROGENEITY ACROSS MTS DATASETS

Next, we put focus on the heterogeneity across MTS datasets
and delve into its role in explaining the seemingly contradictory
experimental findings that suggest that each of two different
technical approaches is the best approach to achieve improved
forecasting accuracy. Unlike datasets in computer vision or nat-
ural language processing, which often share common patterns,
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Fig. 2. Visualization of data distribution based on t-SNE and kernel density estimation.

Fig. 3. Distinct temporal patterns in multiple MTS datasets.

Fig. 4. Spatial indistinguishability in different datasets.

MTS datasets can exhibit very distinct patterns derived from
the diverse underlying systems. We thoroughly investigate this
heterogeneity and categorize datasets based on characteristics of
their temporal and spatial aspects. We argue that different types
of patterns entail different solution challenges, implying that
specific technical approaches are applicable only to particular
types of data. Neglecting this data heterogeneity can lead to
seemingly conflicting experimental finding and to failure to
advocate the right technical approach.

A. Temporal Aspect

We categorize MTS datasets into three types according to
their temporal aspect: datasets with clear and stable patterns,
datasets with significant distribution drift, and datasets with

unclear patterns. We argue that these types of datasets are
progressively less predictable. However, quantifying the pre-
dictability [65], [66] remains an unsolved challenge. Thus,
we analyze selected datasets through visualizations. Specifi-
cally, we chose three typical datasets–PEMS03, ETTh2, and
ExchangeRate–and visualized the original time series in Fig. 3.
To facilitate more intuitive comparisons, we reduce the dimen-
sionality of these datasets to 2D using the t-SNE algorithm [67],
and then visualize the data distribution of the training and testing
sets with the kernel density estimation algorithm [68], as shown
in Fig. 2.2

We can see significantly distinct patterns across these datasets.
First, PEMS03, which records urban traffic flow at different
locations, exhibits clear and stable patterns, i.e., periodicity
with a fixed period. This pattern conforms to the overall pe-
riodicity and stability of urban traffic. Second, ETT contains
data from transformer sensors. Although it contains evident
cyclic patterns, the period is not fixed, and the mean is shifting,
indicating distribution drift. This is because the measured values
are affected by external, unobserved factors, such as weather
and sensor quality. Third, ExchangeRate records the exchange
rates of several currencies and displays minimally discernible
patterns. This outcome stems from the fact that exchange rates
are primarily governed by unpredictable factors, such as eco-
nomic policies. Thus, historical data offers limited value for pre-
dictions, particularly for long-term predictions. Additionally, as
depicted in Fig. 2, the data distributions of the training and testing
sets in PEMS03 exhibit a high degree of similarity, whereas in
the cases of ETTh2 and ExchangeRate, such similarity is not
observed.

Expanding on these insights, we argue that the inherent het-
erogeneity of MTS data is a key cause of seemingly conflicting
findings when comparing advanced neural networks [7], [9],
[10], [16] and basic neural networks [26]. Advanced models
usually possess strong data fitting capabilities. When coupled
with a strong inductive bias, this means that such models imply

2The results shown in Fig. 2 are derived from time series datasets, where
samples are obtained by sliding a window of size P + F over the original time
series (i.e., the time series in Fig. 3). Here, P and F represent the lengths of the
historical and future time series, respectively. For the PEMS03 dataset, P and
F are set to 12, while for the ETTh2 and ExchangeRate datasets, they are set to
336. The selection of P and F is based on previous works [3], [16], and using
different values for P and F yields similar results.
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TABLE III
PERFORMANCE OF ADVANCED TRANSFORMER MODELS AND BASIC LINEAR MODELS ACROSS HETEROGENEOUS MTS DATASETS

strong assumptions about data distributions. Conversely, due
to their simplicity, basic models like the linear model [26]
struggle to capture complex patterns, but also feature relatively
weak inductive bias. Considering both the different modeling
capabilities of these approaches and the heterogeneous temporal
patterns in MTS data we argue that when used on datasets with
stable and clear patterns, advanced models should be able to
capture complex patterns such as periodicity, while basic linear
models remain under-fitted due to their limited capacities. In
contrast, when used on datasets with significant distribution drift
or unclear patterns, advanced models are more likely to capture
spurious features present only in the training dataset, thus facing
over-fitting problems. Based on this discussion, we formulate the
following hypothesis:

Hypothesis 1:

1.1 Advanced neural networks outperform basic ones on
datasets with clear and stable temporal patterns, while
basic neural networks suffer from under-fitting.

1.2 Basic neural networks generally outperform advanced
ones on datasets with significant distribution drift and
datasets with unclear patterns, while advanced neural net-
works suffer from over-fitting.

The study that proposes LTSF-Linear [26] ignores dataset
heterogeneity, and conducts experiments on datasets without
clear and stable patterns, leading to the biased conclusion that
Transformer architectures are ineffective at MTS forecasting.
We study this hypothesis experimentally in Section VI-B.

B. Spatial Aspect

Unlike easy-to-see temporal patterns, spatial dependencies
are harder to grasp, and it is also more difficult to find clear met-
rics that allow to distinguish among datasets according to their
spatial aspects. Many studies interpret spatial patterns loosely
as interactions between time series, and they model them using
GCNs, without discussing in depth how to understand and quan-
tify such patterns. Fortunately, two recent studies, ST-Norm [31]
and STID [30], point out that the indistinguishability of samples
in the spatial dimension (spatial indistinguishability in short)
gets to the essence of spatial dependencies. In the following,
we adopt this idea and, for the first time, design quantitative
metrics to distinguish heterogeneous datasets according to their

spatial aspect. Specifically, we partition MTS datasets into two
types: those with and those without significant spatial indistin-
guishability, and then we discuss when and how to model spatial
dependencies.

In MTS forecasting, samples are generated using a sliding
window of size Tp + Tf , where Tp and Tf denote the lengths
of the historical data and future data. Spatial indistinguishabil-
ity means that for a given time t, we can expect to generate
many samples with similar historical data but different future
data. Simple regression models (e.g., using Multi-Layer Percep-
tions (MLP), RNNs) cannot predict different future data based
on similar historical data. Put differently, they cannot distinguish
the historical samples [30]. Based on this concept, we propose
the following quantitative metrics:

r1 =

∑
t,i,j I

(
AP

t,i,j > eu ∧AF
t,i,j < el

)
T ·N ·N ,

r2 =

∑
t,i,j I

(
AP

t,i,j > eu ∧AF
t,i,j < el

)
∑

t,i,j I
(
AP

t,i,j > eu
)

AP
t,i,j =

Xi
t−Tp:t

·Xj
t−Tp:t

‖Xi
t−Tp:t

‖‖Xj
t−Tp:t

‖ ,

AF
t,i,j =

Xi
t:t+Tf

·Xj
t:t+Tf

‖Xi
t:t+Tf

‖‖Xj
t:t+Tf

‖ . (2)

Intuitive Understanding: For a dataset with T time steps and
N samples, we construct two similarity matrices, AP ,AF ∈
RT×N×N , representing pairwise similarities among the samples
at each time step. Specifically, A∗

t,i,j denotes the similarity
between time series i and j at time step t. Using these matrices,
we define the total sample count as T ·N ·N , the count of his-
torically similar samples as

∑
i,j,t I(AP

i,j,t > eu), and the count
of indistinguishable samples as

∑
i,j,t I(AP

i,j,t > eu ∧AF
i,j,t <

el). Here, eu = 0.9 and el = 0.5 are the upper and lower similar-
ity thresholds, respectively. The indicator function I(·) returns 1
when the condition is satisfied, and 0 otherwise. We then define
two metrics: r1, the ratio of indistinguishable samples to the
total number of samples, and r2, the ratio of indistinguishable
samples to those with similar historical data. These metrics
provide complementary insights: r1 helps determine whether
indistinguishability is a major obstacle to improving predictive
performance, while r2 offers a more nuanced evaluation of the
degree of indistinguishability.
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We calculate the above two metrics for 11 common datasets.
The results are shown in Fig. 4. We can clearly see that the r1 and
r2 of ETT, Electricity (ELC), ExchangeRate (ER), and Weather
are very low, while the r1 and r2 of METR-LA (LA), PEMS-
BAY (BAY), PEMS04 (04), and PEMS08 (08) are substantially
higher. Interestingly, although these two different groups of
datasets have exactly the same format, they are rarely combined
in experimental studies. ETT, Electricity, ExchangeRate, and
Weather are often used in LTSF studies, where spatial dependen-
cies are not of prime interest. Further, METR-LA, PEMS-BAY,
PEMS04, and PEMS08 are used in STF studies, where spatial
dependencies take center stage.

Given the above insights, we discuss when and how to model
spatial dependencies. First, there is no urgent need to model
spatial dependencies on datasets without significant spatial in-
distinguishability, and forcibly modeling spatial dependencies
may even degrade performance. Second, on datasets with signifi-
cant spatial indistinguishability, modeling spatial dependencies
by addressing spatial indistinguishability can improve perfor-
mance. To be more specific, we discuss how STGNNs [6], [11],
ST-Norm [31], and STID [30] work. First, GCNs in STGNNs [6],
[11] usually rely on graph structures that conform to the ho-
mophily assumption [69], [70], where connected nodes often
share similar labels.3 Therefore, nodes (i.e., time series) with
similar historical data but different future data (i.e., labels) are
often disconnected. Given such graph structures, GCNs perform
message aggregation to make historical data distinguishable.
Second, ST-Norm [31] normalizes data on the spatial dimension
by separately refining the high-frequency and the local com-
ponents underlying the input data, making the historical data
distinguishable as well. Third, STID [30] proposes a simple yet
effective idea of attaching a trainable spatial identity to each
time series to distinguish similar historical data. Based on the
above discussion, we state the following hypothesis:

Hypothesis 2:

2.1 On datasets with significant spatial indistinguishability,
modeling spatial dependencies by addressing spatial in-
distinguishability can improve performance.

2.2 On datasets without significant spatial indistinguisha-
bility, forcing the modeling towards spatial dependencies
may degrade performance degradation.

We study this hypothesis in Section VI-C.

VI. EXPERIMENTS

In this section, we conduct extensive experiments to assess our
hypotheses and address controversies in technical approaches.
In addition, we provide comprehensive analysis and compar-
ison of popular MTS forecasting models based on BasicTS+
and offer insight into the progress already made. Specifically,
Section VI-A covers datasets, baselines, and implementation

3In regression, the label is a real-value response corresponding to the in-
stance [71].

details. Section VI-B evaluates the effectiveness of advanced and
basic neural networks for LTSF, thus confirming the hypothesis
presented in Section V-A. Section VI-C consider when and
how to model spatial dependencies, confirming the hypothesis
in Section V-B. Section VI-D discusses how to select models
or datasets, presents detailed experimental results, and offers
insight into the advancements made. All code, datasets, exper-
imental scripts, and results can be accessed through the public
GitHub repository at.

A. Experimental Setup

1) Datasets: Following previous LTSF and STF studies [2],
[6], [7], [9], [72], we use 14 datasets to conduct experi-
ments, including METR-LA, PEMS-BAY, PEMS03, PEMS04,
PEMS07, PEMS08, ETTh1, ETTh2, ETTm1, ETTm2, Elec-
tricity, Weather, ExchangeRate, and M4 datasets. Not all the
datasets from BasicTS+ are included due to space limitations.
The remaining datasets are available via the code repository,
including large-scale MTS datasets [73].

2) Baselines: We include popular baselines for which official
code is available, including LTSF and STF models. For brevity,
we omit their detailed descriptions and simply categorize the
baselines based on their technical approaches.

Considering STF models, we cover influential baselines that
have high citation counts or offer state-of-the-art performance.
First, STGCN [12], DCRNN [6], GWNet [11], DGCRN [44],
and D2 STGNN [3] are prior-graph-based solutions that rely on
pre-defined graphs to indicate spatial dependencies among time
series. Second, AGCRN [48], MTGNN [49], StemGNN [23],
GTS [50], and STEP [52] are latent-graph-based methods that
learn graph structures and optimize STGNNs jointly. Third,
we adopt two non-graph based methods, ST-Norm [31] and
STID [30]. Considering LTSF models, we cover both ad-
vanced and basic neural networks. First, Informer [7], Auto-
former [9], FEDformer [10], Triformer [74], Pyraformer [15],
Crossformer [8], PatchTST [16] utilize variants of the Trans-
former to capture long-term historical information. Second,
Linear, DLinear, and NLinear utilize a simple linear layer [26].

For a more exhaustive comparison, we also cover three classic
time series forecasting models: LGBM [75], DeepAR [76],
and NBeats [64]. LGBM is a widely-used gradient boosting
framework. DeepAR [76] and NBeats [64] are classic deep
learning solutions. These baselines are adopted widely in many
industrial applications.

Due to the space limitation, we cannot cover all baselines in
BasicTS+; additional baselines are included in the repository,
e.g., STGODE [25], NHiTS [77], and TimesNet [28].

3) Implementation Details: For dataset partitioning, we
adopt settings consistent with previous work for each dataset.
For brevity, we omit the details and refer interested readers to
our repository. We set the length of the historical data and future
data of the STF task to 12. For the LTSF task, we set the length of
future data to 336. We vary the historical length among 96, 192,
336, and 720, and we report the best prediction performance.
For error calculations, we report only the average error between
the forecast time series and the true future time series, due to
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the space limitation. For the STF task, we employ the MAE,
RMSE, MAPE, and WAPE metrics. For the LTSF task, we
disregard MAPE, considering that there are many zero values in
commonly used LTSF datasets. For the M4 competition dataset,
we employ its original settings [78]. In the efficiency studies in
Section VI-D, we report the average training time per epoch (in
seconds) and the number of model parameter (in million). We
set the batch size to 64. If an Out-Of-Memory (OOM) situation
occurs, we reduce the batch size by half (to a minimum of 8).
All experiments are conducted using a NVIDIA 3090 GPU and
128GB memory.

4) Hyperparameter Tuning: For model implementation, we
adopt the public model architecture and hyperparameters. For
optimization hyperparameters, such as learning rate and batch
size, we also adopt the public settings. Then, we tune these
hyperparameters of each model on each dataset via grid search
to ensure performance at least as good as reported in the
original paper (if available). Although using AutoML to tune
these hyperparameters may be optimal, we found that manual
hyperparameter tuning is acceptable within a certain range. For
example, batch sizes of 32, 64, and 128 yield similar perfor-
mance and do not contradict our findings.

B. Advanced Neural Networks versus Basic Neural Networks

This subsection studies the performance of advanced
models (e.g., Transformers) versus basic models (e.g., linear
models) and assesses the hypotheses in Section V-A. We con-
sider four datasets: PEMS04 and PEMS08, which exhibit clear
and stable patterns, and ETTh2 and ETTm2, which demonstrate
significant distribution drift or unclear patterns. Six baseline
models are chosen based on the LTSF-Linear study [26], where
Informer, Autoformer, and FEDformer are advanced Trans-
former models, and Linear, DLinear, and NLinear are basic
linear models. They all follow the LTSF setup described in Sec-
tion VI-A3. We report MAE, RMSE, and WAPE. Furthermore,
we calculate the performance gap between the best advanced
and basic models, as shown in Table III.

First, advanced models generally outperform basic models
by a very large margin (green background) on datasets with
clear and stable patterns. Second, basic models consistently
outperform advanced models on datasets with distribution drifts
or unclear patterns. This gap in prediction performance may at
first seem puzzling. To intuitively understand why, we visualize
the MAE when varying the number of epochs for FEDformer
and DLinear on PEMS08 and ETTh2 datasets—see Fig. 5.
On PEMS08, the training, validation, and testing MAEs of
FEDformer start from similar values and keep decreasing. In
contrast, DLinear’s MAEs, even the training MAE, do not
decrease with increasing epochs, which indicates that DLinear
suffers from under-fitting. Next, on the ETTh2 dataset, the train-
ing MAE of FEDformer keeps decreasing, while its validation
and testing MAEs start to increase already when reaching 2
epochs, which indicates that FEDformer suffers from serious
over-fitting. These results are consistent with the hypothesis in
Section V-A.

We summarize our findings as follows. First, benefiting from
their strong modeling capacities, advanced neural networks are

Fig. 5. MAE for varying epochs.

TABLE IV
PERFORMANCE OF STID, AGCRN, AND THEIR VARIANTS ON DATASETS WITH

VARYING SPATIAL INDISTINGUISHABILITY

far more effective than basic neural networks when the data has
clear and stable patterns. Second, models with less inductive
bias [79] (e.g., models based on MLPs or a vanilla Trans-
former [16]) usually perform better when there is no explicit
pattern. Moreover, although some recent solutions are positioned
as general MTS prediction solutions, we believe that effective
general solutions should first perform well on data with clear
patterns and should then also consider their performance on time
series with less clear patterns.

C. Delving Into Spatial Dependencies

Here, we discuss when and how to model spatial dependen-
cies, and we assess the hypothesis in Section V-B. We select four
datasets, where METR-LA (LA) and PEMS-BAY (BAY) feature
high spatial indistinguishability (see r1 and r2 in Section V-B),
while ExchangeRate (ER) and ETTm1 feature very low spatial
indistinguishability. We choose two baseline models that adopt
different approaches to the modeling of the spatial dependen-
cies: STID [30] and AGCRN [48]. STID designs trainable
spatial identity embeddings, while AGCRN adopts a GCN-based
learning module. Additionally, we remove the spatial modeling
components from each of them, obtaining the variant STID∗

without the spatial identities and the variant AGCRN∗ with an
adjacency matrix set to be the identity matrix.

The results are shown in Table IV. On datasets with sig-
nificant spatial indistinguishability, the use of both trainable
spatial identity embeddings and GCNs can yield significant
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performance gains. Conversely, on datasets with low spatial
indistinguishability, adding these spatial modeling components
degrades performance, suggesting that modeling spatial de-
pendencies (or named cross-dimension dependencies) on these
datasets is not necessary.

Based on the above discussion, we conclude that spatial
indistinguishability is a strong indicator of spatial dependencies
and that we do not always need to model spatial dependencies.
When there is high spatial indistinguishability in the data, it is
purposeful to adopt spatial modeling approaches, e.g., GCNs,
normalization [31], and spatial identity [30], to improve perfor-
mance. In contrast, on datasets with low spatial indistinguisha-
bility, designing spatial modeling modules needs to be done with
extreme care, as this may cause performance degradation.

D. Performance and Efficiency Benchmarking

So far, we have examined thoroughly the impact of hetero-
geneity among datasets on the promises of different technical
directions and solutions. We find a strong relationship between
model architecture and data characteristics. Next, we discuss: i)
how to select or design an MTS forecasting solution for a given
dataset and ii) how to choose datasets suitable for evaluating a
given MTS forecasting solution, and we iii) comprehensively an-
alyze the performance and efficiency of existing solutions using
rich datasets and iv) discuss the progress made and noteworthy
research directions.

1) How to Select or Design MTS Solutions for a Given
Dataset: Patterns in the temporal dimension should be exam-
ined first. For data exhibiting significant distribution drift or
lacking clear patterns, unbiased or weakly biased models should
be chosen, e.g., linear layers, MLPs, or the vanilla Transformer.
If the data displays clear and stable patterns, powerful sequence
models are a more reasonable option, e.g., TCNs, RNNs, or
Transformer architectures. In addition, we need to investigate
whether the data has a high sample indistinguishability on the
spatial aspect. If so, a spatial dependency modeling module is
recommended. Alternative approaches include graph convolu-
tion, spatial-temporal normalization, and spatial identity attach-
ing. Moreover, we recommend STID [30] and Linear [26] as
baselines. Given their simplicity, we believe that more complex
LTSF or STF solutions are only effective if they can significantly
outperform these two. We summarize the above discussion in the
road map in Fig. 6.

2) How to Choose Suitable Datasets for Evaluating a Given
MTS Solution: The key to validating the effectiveness of solu-
tions, which are usually designed to address specific tasks, is to
select datasets that align with the task objectives. For instance,
STF algorithms often aim to model spatial-temporal depen-
dencies. Thus, datasets with significant spatial dependency are
necessary to validate the spatial modeling. LTSF algorithms,
on the other hand, aim for generic time series forecasting and
should be validated on datasets with and without clear and stable
patterns to assess their generalization. However, most LTSF
studies only validate on datasets lacking clear patterns like ETT
or ExchangeRate. Our experimental results show that this can
create an illusion of progress.

Fig. 6. Road map for selecting or designing MTS models.

Moreover, there are times when our objective is practical,
ranking the performance of popular algorithms. In such cases,
real compound data is more suitable as it typically encompasses
multiple challenges simultaneously. For example, the M4 com-
petition dataset comprises both time series with and without
clear and stable patterns. It is important to note that a solution
designed specifically for one type of task might not outperform
others on such datasets as it contains multiple complex tasks.
For instance, SOTA models in STF or LTSF might not yield
satisfactory results on the M4 dataset.

3) Experimental Results: First, we present and discuss the
detailed performance and efficiency evaluations on LTSF and
STF tasks. Then, we select representative solutions from STF
and LTSF, along with classic time series solutions, and showcase
their results on the complex competition M4 dataset.

The results for LTSF are shown in Table VI. When used on
datasets without clear and stable patterns, the state-of-the-art
advanced Transformer models [8], [16] and the basic linear
models [26] exhibit comparable performance. Considering the
simplicity of Linear-based models, we believe that for LTSF
prediction tasks, designing new training strategies or engaging
in feature engineering to address distribution drift or ambiguous
patterns poses more important challenges than designing in-
creasingly more complex time series forecasting models. More-
over, on datasets with clear and stable patterns, it is surprising
that many recent solutions struggle to outperform the earliest
baseline, Informer [7]. Considering that making predictions on
such datasets should be a more straightforward task, this raises
concerns that the architectures of existing LTSF models might
have been over-fitted datasets like ETT, Electricity, Weather,
and ExchangeRate that are used commonly in LTSF studies.
This reaffirms the importance of selecting appropriate evaluation
datasets.

Table V reports the experimental results for STF. Benefit-
ing from the incorporation of prior knowledge, prior-graph-
based methods generally perform better than latent-graph-based
or non-graph-based methods. Furthermore, it is apparent that
learning a graph structure can be very challenging. Among
the different solutions, only MTGNN [49] and STEP [52]
are capable of learning effective graph structures that do not
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TABLE V
STF ON METR-LA, PEMS-BAY, PEMS03, PEMS04, PEMS07, AND PEMS08 DATASETS

TABLE VI
LTSF ON PEMS04, PEMS08, ETTH1, ETTM1, ELECTRICITY, WEATHER, AND EXCHANGERATE (ER) DATASETS
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TABLE VII
RESULTS ON THE M4 DATASET

significantly degrade the prediction performance. Overall, it is
obvious that more intricate network structures yield very limited
improvement. For example, although D2STGNN [3], published
in 2022, is the state-of-the-art for STF prediction, its MAE on
METR-LA is only 6% higher than that of Graph WaveNet [11],
published in 2019. In addition, it is even more surprising that
Graph WaveNet [11] and its variant MTGNN are still able
to significantly outperform many newer solutions, including
StemGNN [23], GTS [50], and others [24], [25], [63]. Therefore,
we find that compared to improving prediction accuracy by
designing increasingly complex models, more progress may be
achieved by focusing on other important and challenging issues,
such as efficiency, graph structure learning. For example, STID
and STNorm are highly efficient and have achieved satisfactory
results on most datasets.

In summary, advanced solutions for LTSF and STF repre-
sent substantial progress on the modeling of long-term time
dependencies and spatial dependencies, respectively. However,
complex industrial datasets often contain more complex chal-
lenges. Table VII reports the experimental results of repre-
sentative solutions on the M4 dataset. Specifically, LGBM,
DeepAR, and NBeats are widely used solutions in industrial
applications; STID represents STF prediction solutions, while
PatchTST represents LTSF solutions. We follow an existing
experimental setup from [28] and report their results on the
Yearly, Quarterly, Monthly, and Others subsets, including also
their weighted averages. As in the literature [28], we remove
the ensemble method in NBeats for fair comparison. Although
PatchTST and STID are superior in Tables VI and V, they
perform worse than classic algorithms on the M4 dataset.

4) Limitations of Current Studies and Future Directions:
There is no doubt that multivariate time series hold significant
value in various scientific fields [80], [81], [82]. Although deep
learning-based MTS forecasting solutions, particularly in STF
and LTSF, have seen substantial advancements, current efforts
mainly focus on designing increasingly intricate model architec-
tures. The limitation is that these endeavors appear to be effective
only when the data exhibits strong patterns. However, unlike
image [83], [84] and natural language data, whose patterns are
frequently consistent and stable, time series data can be greatly
affected by external factors, resulting in distribution drift or

the frequent occurrence of unpredictable changes. Moreover,
MTS data in real-world scenarios often face challenges related
to insufficient data volume and low data quality [85]. These
factors represent key bottlenecks for the broader application
of existing research outcomes. Therefore, we emphasize that
future research should prioritize more realistic scenarios, such
as modeling distribution shifts, predicting with low-quality data,
and zero- or few-shot learning.

VII. CONCLUSION

In this study, we address the seemingly inconsistent experi-
mental findings and difficulties in selecting technical directions
in the area of Multivariate Time Series (MTS) forecasting, shed-
ding light on the actual advance achieved. First, we introduce
a novel benchmark called BasicTS+ that is designed to enable
fair and reasonable comparisons of MTS forecasting solutions.
By adopting a unified training pipeline, BasicTS+ addresses the
issue of inconsistent performance, and provides more reasonable
evaluation procedures. Second, we delve into the heterogene-
ity across MTS datasets. Considering the temporal aspect, we
categorize datasets according to whether they exhibit clear and
stable patterns, significant distribution drift, or unclear patterns.
Considering the spatial aspect, we devise metrics to quantify
spatial dependencies and partition datasets into those with and
without significant spatial indistinguishability. We emphasize
that many conclusions drawn in prior research hold only for
certain types of data, and considering these conclusions to be
more general can lead researchers to make counterproductive
inferences. Additionally, using BasicTS+ and the associated
MTS datasets, we conduct an extensive analysis and compar-
ison of popular solutions. These findings offer valuable insight
into the progress already made, aiding researchers in choosing
appropriate solutions or datasets and drawing more reliable
conclusions.
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