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ABSTRACT
Multivariate time series forecasting (MTSF) is crucial for decision-
making to precisely forecast the future values/trends, based on the
complex relationships identified from historical observations of
multiple sequences. Recently, Spatial-Temporal Graph Neural Net-
works (STGNNs) have gradually become the theme of MTSF model
as their powerful capability in mining spatial-temporal dependen-
cies, but almost of them heavily rely on the assumption of historical
data integrity. In reality, due to factors such as data collector failures
and time-consuming repairment, it is extremely challenging to col-
lect the whole historical observations without missing any variable.
In this case, STGNNs can only utilize a subset of normal variables
and easily suffer from the incorrect spatial-temporal dependency
modeling issue, resulting in the degradation of their forecasting
performance. To address the problem, in this paper, we propose a
novel Graph Interpolation Attention Recursive Network (named
GinAR) to precisely model the spatial-temporal dependencies over
the limited collected data for forecasting. In GinAR, it consists of
two key components, that is, interpolation attention and adaptive
graph convolution to take place of the fully connected layer of sim-
ple recursive units, and thus are capable of recovering all missing
variables and reconstructing the correct spatial-temporal depen-
dencies for recursively modeling of multivariate time series data,
respectively. Extensive experiments conducted on five real-world
datasets demonstrate that GinAR outperforms 11 SOTA baselines,
and even when 90% of variables are missing, it can still accurately
predict the future values of all variables.
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1 INTRODUCTION
Multivariate time series forecasting (MTSF) is widely used in prac-
tice, such as transportation [48], environment [56] and others [71].
It predicts future values of multiple interlinked time series by
using their historical observations, and contributes to decision-
making [59, 62, 72]. Indeed, multivariate time series (MTS) can be
formalized as a kind of classical spatial-temporal graph data [3],
such as traffic flow [18], each variable of which is collected in
chronological order, using a sensor deployed at an independent
position. Naturally, they usually have two key factors, temporal
dependency [63] and spatial correlation [57]. The former charac-
terizes complex patterns (e.g., causal relationships) of instances in
chronological order, and the later depicts the differences of time
series corrected each other in spatial dimension. Therefore, effec-
tively mining spatial-temporal dependencies is crucial for MTSF
to precisely predict future values of the time series, or to better
understand of how they interact [44, 54, 55].

Recently, Spatial-Temporal Graph Neural Networks (STGNNs)
combine the sequence model and graph convolution (GCN) to cap-
ture spatial-temporal dependencies of MTS and achieve significant
progress in MTSF [10], but their superior performances heavily rely
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Figure 1: The principle and examples of multivariate time
series forecasting with variable missing. V1 to V5 represent
different variables. Compared to the other two tasks, our

task can only use historical observations of certain variables
to predict the future values of all variables. The forecasting
performance of TGCN declines as the missing rate increases.

on the data quantity [83]. Since the time series data in practice is
always incomplete, it is very challenging to obtain whole historical
observations of all variables for accurate forecasting [42]. To make
things worse, the data from some variables may be even unavailable
for a long time under certain conditions [11]. We can take a classical
MTS application (i.e., air quality forecasting) as an example, the data
collectors may easily work anomaly owing to some unforeseen fac-
tors (e.g., horrible weather) [43]. Because equipment maintenance
usually takes days or even months, corresponding data collectors
only output outliers for a long time [75]. Thus, STGNNs need to
address a problem, namely, whole history observations missing
of some variables. This means that STGNNs only achieve MTSF
using the remaining normal variables (shown in Figure 1 (c)), which
severely limits their performance. To alleviate this problem, some
works [6] only predict values of remaining normal variables by
discarding all missing variables. However, if missing variables are
key samples (e.g., important locations like hub nodes), the inability
to predict their values will profoundly affect decision-making [64].

The above phenomenon shows that MTSF faces a significant
practical challenge: how to forecast MTS when missing part
of variables? By rethinking the characteristics of STGNNs and
this task, the main problem is that STGNNs easily capture incor-
rect spatial-temporal dependencies during the modeling process,
resulting in error accumulation and degraded forecasting perfor-
mance. On the one hand, since each missing variable is usually a
straight-line sequence composed of outliers, the sequence model
in STGNNs [16] cannot mine any valuable pattern and informa-
tion, resulting in incorrect temporal dependencies. On the other
hand, existing STGNNs [22, 27, 34] need to use historical observa-
tions from all variables to construct spatial correlations. Because
whole history observations of some variables are missing, existing
STGNNs cannot establish spatial correlations between missing and

normal variables, leading to incorrect spatial correlations. In this
case, as the missing rate increases, the above phenomena become
more serious, leading to a significant decline in the performance
of STGNNs. For example, a classic STGNN model, temporal graph
convolutional network (TGCN) [81], is used for further analysis
when given different missing rates on PEMS04. Figure 1 (d) shows
that its performance deteriorates while increasing the missing rate.

At present, an intuitive strategy for addressing this challenge is
to combine imputation and forecasting methods and propose two-
stage models [33]. However, classic imputation methods [8, 65]
primarily rely on the context information of time series to recover
missing values. When history observations from some variables are
unavailable for a long time, these methods cannot achieve reliable
recovery effects since the missing variables do not have any normal
value in the temporal dimension. In addition to the above classical
methods, existing mainstream imputation methods [2, 46] combine
the context information and spatial correlations of MTS for generat-
ing plausible missing values. However, they also have two problems:
(1) Components that use context information in these imputation
methods also introduce incorrect temporal dependencies, limiting
the effectiveness of data recovery and leading to error accumula-
tion [6]. (2) these imputation methods mainly rely on fixed spatial
correlations (such as road network structure) to establish correspon-
dences between missing variables and normal variables [73]. When
the missing rate is significant, they cannot fully use all normal
variables to recover missing variables, resulting in the ineffective
recovery of missing variables that do not correspond with nor-
mal variables [79]. In general, due to the introduction of incorrect
temporal dependencies and the lack of sufficient correspondences
between missing variables and normal variables, two-stage models
cannot work well in MTSF with variable missing.

To solve the above problems and realize MTSFwith variable miss-
ing, forecasting models need to fully utilize historical observations
of all normal variables to correct spatial-temporal dependencies
during the modeling process. To this end, we propose an end-to-
end framework called Graph Interpolation Attention Recursive
Network (GinAR). Specifically, we use simple recursive units (SRU)
based on the RNN framework as the backbone and propose two key
components (interpolation attention (IA) and adaptive graph con-
volution (AGCN)) to replace all fully connected layers in SRU. This
is done to realize end-to-end forecasting while correcting spatial-
temporal dependencies. On the one hand, during the process of
recursive modeling, for data at each time steps, IA first generates
correspondences between normal variables and missing variables,
then uses attention to restore all missing variables to plausible rep-
resentations. In this way, the sequence model avoids directly mining
missing variables that do not have any valuable patterns, thereby
correcting temporal dependencies. On the other hand, for repre-
sentations processed by IA, we use AGCN to reconstruct spatial
correlations between all variables. Since all missing variables are
recovered, AGCN can more accurately utilize their representations
to generate a more reliable graph structure and obtain more accu-
rate spatial correlations. In this way, GinAR mines more accurate
spatial-temporal dependencies in the process of recursive modeling
and effectively avoids the error accumulation problem. Thus, Gi-
nAR can implement MTSF with variable missing more accurately.
The main contributions of this paper are as follows:
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• To the best of our knowledge, this is the first work that
challenges to achieve MTSF with variable missing. The pro-
posed end-to-end framework can address the problem of
error accumulation in the modeling process.

• To achieve this challenging task, we carefully design Graph
Interpolation Attention Recursive Network, which contains
two key components (interpolation attention and adaptive
graph convolution). We use above components to replace
all FC layers in SRU and propose the GinAR cell, aiming to
correct spatial-temporal dependencies during the process of
recursive modeling.

• We design experiments on five real-world datasets. Results
show that GinAR can outperform 11 baselines on all datasets.
Even when 90% of variables are missing, it can still accurately
predict the future values of all variables.

2 RELATEDWORKS
2.1 Spatial-Temporal Forecasting Method
STGNNs combine the advantages of GCN [32] and sequence mod-
els [25] to fully mine spatial-temporal dependencies of MTS, and
further improve the ability of spatial-temporal forecasting [15, 41,
51]. Li et al. [35] combine gated recursive unit (GRU) and GCN
to propose the diffused convolutional recurrent neural network
(DCRNN) and realize MTSF. Wu et al. [69] propose the graph
wavenet (GWNET) by combining temporal convolutional network
(TCN) and GCN. Compared with traditional methods, above two
models achieves excellent results. However, these methods ignore
hidden spatial correlations between variables, which limits their
effectiveness [32]. To further improve the ability of STGNN to
mine spatial correlations, graph learning has been widely stud-
ied [7]. Zheng et al. [82] design a spatial attention mechanism to
learn attention scores by considering traffic features and variable
embeddings in the graph structure. Shang et al. [47] use histori-
cal observations of all variables to learn the discrete probability
graph structure. Shao et al. [52] propose decoupled spatial-temporal
framework and dynamic graph learning to explore spatial-temporal
dependencies between variables. Although STGNNs have made sig-
nificant progress in MTSF, they need to use the variable features or
prior knowledge to mine spatial-temporal dependencies [20, 30, 53].
However, in MTSF with variable missing, the graph structure based
on prior knowledge and the graph learning based on variable fea-
tures are affected by missing variables, which leads to inaccurate
modeling of spatial correlations [21, 36, 76].

2.2 Imputation Method
Existing imputation methods include classical models [60] and deep
learning-based models [19, 23, 24]. Compared with traditional mod-
els, deep learning can analyze hidden correlations between missing
and normal data and improve performance [77]. Wu et al. [65]
combine the matrix transformation with CNN to realize the miss-
ing data imputation, but it ignores correlations between different
variables, limiting its performance. Marisca et al. [28] combine cross-
attention and temporal attention to achieve the recovery of missing
data, but they do not take full advantage of the spatial correlations
between variables, which leads to inadequate data recovery. In ad-
dition to the above methods, GNN-based methods [38] combine

GCN and sequence models to analyze spatial-temporal dependen-
cies between missing data and normal data, and further recover all
missing data [61]. Wu et al. [67] propose inductive graph neural
network to recover missing data. Compared with classical methods,
the proposed model has better performance. Chen et al. [12] use
the adaptive graph recursive network to realize the imputation of
missing data. Experiments show that the framework combining
graph convolution with recurrent neural networks can better use
temporal information and spatial correlation to recover missing
data. Although imputation methods can recover missing data and
improve the performance of forecasting models, they often suffer
from several problems: (1) Classical imputation methods [1] need to
reconstruct both missing data and normal data, resulting in the loss
of effective information. (2) Existing imputation methods [4, 45]
require full use of temporal information to recover missing data.
When the data from some variables are unavailable for a long time,
existing methods introduce incorrect temporal dependencies, re-
sulting in limited recovery performance [13, 37].

3 METHODOLOGY
3.1 Preliminaries
Dependency graph. In multivariate time series, the change of
each time series depends not only on itself but also on other time
series. Such a dependency can be captured by the dependency graph
𝐺 = (𝑉 , 𝐸). 𝑉 is the set of variables, and |𝑉 | = 𝑁 . Each variable
corresponds to a time series. 𝐸 is the set of edges. The dependency
graph can be represented by an adjacency matrix: 𝐴 ∈ 𝑅𝑁 ∗𝑁 .

Multivariate time series forecasting. Given a historical ob-
servation tensor 𝑋 ∈ 𝑅𝑁 ∗𝐻∗𝐶 from 𝐻 time slices in history, the
model can predict the value 𝑌 ∈ 𝑅𝑁 ∗𝐿 of the nearest 𝐿 time steps
in the future. 𝐶 is the number of features. The goal of MTSF is to
construct a mapping function between 𝑋 ∈ 𝑅𝑁 ∗𝐻∗𝐶 and 𝑌 ∈ 𝑅𝑁 ∗𝐿 .

Multivariate time series forecasting with variable missing.
Compared with MTSF, the main difference of this task is that there
are some variables with whole history data missing in historical
observations 𝑋 ∈ 𝑅𝑁 ∗𝐻∗𝐶 . Thus, we mask 𝑀 variables randomly
from 𝑁 variables of the historical observation 𝑋 ∈ 𝑅𝑁 ∗𝐻∗𝐶 . The
values of these𝑀 variables are treated as 0, i.e. missing values and
a new input feature 𝑋𝑀 ∈ 𝑅𝑁 ∗𝐻∗𝐶 is obtained. The core goal of
this task is to construct a mapping function between input 𝑋𝑀 ∈
𝑅𝑁 ∗𝐻∗𝐶 and output 𝑌 ∈ 𝑅𝑁 ∗𝐿 .

3.2 Overall Framework of GinAR
The framework of GinAR is shown in Figure 2, which uses multiple
GinAR layers as the encoder and MLP as the decoder. The GinAR
layer adopts the idea of recursive modeling, and its core structure is
the GinAR cell. By transmitting input features with variable missing
to GinAR, it can predict future values of all variables. Next, we
briefly introduce the design motivation of GinAR and the function
of its components.

Firstly, we intuitively discuss the design idea for the GinAR cell.
Specifically, we use IA and AGCN to replace all fully connected
layers in SRU. IA can use normal variables to restore the missing
variables to plausible representations, which can help the sequence
model to better mine temporal dependencies of missing variables.
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Figure 2: (a) The overall framework of GinAR. The GinAR layer adopts the RNN-based sequence framework and encodes
historical observations of MTS with variable missing. The MLP-based decoder is used to predict future values of all variables.

(b) The specific structure of the interpolation attention. (c) The specific structure of the adaptive graph convolution.

Furthermore, for all variables processed by IA, their spatial cor-
relations cannot be determined by a predefined graph based on
prior knowledge. Therefore, we use AGCN, which introduces graph
learning, to reconstruct spatial correlations between all variables.

Then, we briefly discuss the encoder, which uses the recursive
modeling framework. Specifically, at each time step 𝑇 , the input
features 𝑥𝑇 ∈ 𝑅𝑁 ∗𝐶 of the current moment and the cell state 𝑐𝑇−1
of the previous moment are transmitted to the GinAR cell. Then, the
GinAR cell outputs the cell state 𝑐𝑇 for the next cell and obtains the
hidden feature ℎ𝑇 . In this way, the GinAR layer utilizes the GinAR
cell to restore missing variables and reconstruct spatial correlations,
while simultaneously capturing temporal dependencies through
the recursive modeling framework. Besides, due to the introduction
of skip connections in the GinAR cell, stacking multiple GinAR
layers can capture deeper hidden information.

Finally, we discuss the decoder and the forecasting process. An
important step in the forecasting process is to properly filter the
hidden features obtained by the encoder. On the one hand, since the
encoder takes the form of recursive modeling, the last hidden state
of each GinAR layer contains all the information from the historical
observation [31]. On the other hand, due to the introduction of skip
connections, the hidden features obtained by each GinAR layer
contains different information [26]. Therefore, we concatenate the
last hidden state of all GinAR layers and use the concatenated tensor
as the input to the decoder. Besides, we use the MLP, which is based
on the direct multi-step (DMS) forecasting strategy [66], to predict
future changes for all nodes. Compared with decoders based on
auto-regressive [5] or iterated multi-step (IMS) [40] forecasting, the
proposed method can solve the problem of error accumulation and
improve the forecasting accuracy.

3.3 Interpolation Attention
For eachmissing variable, interpolation attention needs to select the
normal variables for induction and give the corresponding weight
for the selected normal variables. Thus, it contains two main steps:

(1) It first generates correspondences betweenmissing variables and
normal variables. (2) Based on above correspondences, attention
is used to realize the induction of missing variables. The main
schematic diagram of interpolation attention is shown in Figure 3.
The specific modeling steps of IA are shown below:

Step 1: First, we need to generate correspondences between
missing variables and normal variables. Specifically, we initialize a
diagonal matrix 𝐼𝑁 ∈ 𝑅𝑁 ∗𝑁 and randomly initialize two variable-
embedding matrices 𝐸𝐼𝐴1 ∈ 𝑅𝑁 ∗𝑑 and 𝐸𝐼𝐴2 ∈ 𝑅𝑑∗𝑁 . The value of
variable embedding matrix can be iterated continuously during
network training. Based on following formulas, correspondences
between missing variables and normal variables can be obtained:

𝐴𝐼𝐴 = (𝐼𝑁 + softmax(ReLU(𝐸𝐼𝐴1𝐸𝐼𝐴2)), (1)

where, softmax(·) is the activation function. ReLU(·) is the activa-
tion function. 𝐴𝐼𝐴 ∈ 𝑅𝑁 ∗𝑁 is a two-dimensional matrix. When the
value of row 𝑖 and column 𝑗 in the 𝐴𝐼𝐴 is greater than 0, it means
that there is a correlation between the variable 𝑖 and the variable
𝑗 . In other words, the interpolation attention can use the normal
variable 𝑗 to recover the missing variable 𝑖 . Based on the above
variable correlation matrix 𝐴𝐼𝐴 ∈ 𝑅𝑁 ∗𝑁 , we can obtain the set of
normal variables 𝑁 (𝑖) associated with the missing variable 𝑖 .

Step 2: Next, the missing variables 𝑖 are recovered by using
attention mechanism and other associated normal variables 𝑗 ∈
𝑁 (𝑖). The attention coefficient 𝛼𝑖 𝑗 between the missing variable 𝑖
and normal variable 𝑗 ∈ 𝑁 (𝑖) can be calculated as follows:

𝛼𝑖 𝑗 =

exp
(
LeakyReLU

(
𝐹𝐶 (𝑊 𝐼𝐴

𝑗
ℎ𝐼𝐴
𝑗
)
))

∑
𝑘∈𝑁 (𝑖 ) exp

(
LeakyReLU

(
𝐹𝐶 (𝑊 𝐼𝐴

𝑘
ℎ𝐼𝐴
𝑘

)) , (2)

where, 𝐹𝐶 (·) is the fully connected layer. ℎ𝐼𝐴
𝑗

and𝑊 𝐼𝐴
𝑗

represent
the features and weight of variable 𝑗 , respectively. LeakyReLU(·)
is the activation function. exp(·) stands for exponential function.

Step 3: The above attention coefficients areweighted and summed
with the representations of all associated normal variables to achieve
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Figure 3: The schematic diagram of IA. Blue represents
normal variables. White represents missing variables.

Yellow represents the variables after induction.

the recovery of the missing variable 𝑖 .

ℎ𝐼𝐴
′

𝑖 = ReLU(
∑︁

𝑗∈𝑁 (𝑖 )
𝛼𝑖 𝑗𝑊

𝐼𝐴
𝑖 𝑗 ℎ𝐼𝐴𝑗 ), (3)

Step 4: Repeat steps 2 through 3 until all missing variables are
restored. At this time, all variables have representations in the new
tensor obtained by the IA method. The original input feature 𝑋𝑀 ∈
𝑅𝑁 ∗𝐻∗𝐶 can be converted to 𝑋 𝐼𝐴

𝑀
∈ 𝑅𝑁 ∗𝐻∗𝐶′

. (Note: This step is
completed by using matrix multiplication for parallel computation.)

3.4 Adaptive Graph Convolution
By introducing prior knowledge to define an adjacency matrix 𝐴,
the predefined graph can help models establish a basic spatial cor-
relation. However, for MTSF with missing variables, the predefined
graph cannot adequately model the spatial correlation of all vari-
ables due to a large number of missing variables. To this end, we
propose the data-based adaptive graph convolution, which consists
of the predefined graph and the adaptive graph.

Predefined graph: In this paper, distance is used to construct
adjacency matrix 𝐴 for traffic data with road network information.
For the data without road network information, the Pearson corre-
lation coefficient [56] is used to form the adjacency matrix 𝐴. The
predefined graph 𝐴𝑝𝑟𝑒 ∈ 𝑅𝑁 ∗𝑁 for the graph convolution network
is obtained by the following formula:

𝐴𝑝𝑟𝑒 = (𝐼𝑁 + 𝐷−1/2𝐴𝐷−1/2), (4)

where, 𝐼𝑁 ∈ 𝑅𝑁 ∗𝑁 represents the diagonal matrix with value 1. 𝐷
is the degree matrix of 𝐴.

Adaptive graph: It needs to initialize a diagonal matrix 𝐼𝑁 ∈
𝑅𝑁 ∗𝑁 of value 1 and randomly initialize a variable-embedded ma-
trix 𝐸𝐴 ∈ 𝑅𝑁 ∗𝑑 . The value of variable embedding matrix can be
iterated continuously during neural network training. Then, based
on the variable representation 𝑋 𝐼𝐴

𝑀
∈ 𝑅𝑁 ∗𝐻∗𝐶′

obtained by the in-
terpolation attention and the variable-embedded matrix 𝐸𝐴 ∈ 𝑅𝑁 ∗𝑑 ,
the new variable embedding 𝐸𝑛 ∈ 𝑅𝑁 ∗𝑑 are obtained.

𝐸𝑛 = 𝐹𝐶 (concat(𝑊𝑥𝑋
𝐼𝐴
𝑀 ,𝑊𝑒𝐸𝐴)), (5)

where,𝑊𝑥 and𝑊𝑒 represent the weights of the variable represen-
tation 𝑋 𝐼𝐴

𝑀
∈ 𝑅𝑁 ∗𝐻∗𝐶′

obtained by the interpolation attention and
the variable-embedded matrix 𝐸𝐴 ∈ 𝑅𝑁 ∗𝑑 , respectively. concat(·)
means concatenate two tensors. The adaptive graph can be obtained
by the following formula:

𝐴𝑎𝑑𝑎𝑝 = (𝐼𝑁 + softmax(GeLU(𝐸𝑛𝐸𝑇𝑛 )), (6)

where, 𝐸𝑇𝑛 represents the transpose of 𝐸𝑛 .
Adaptive graph convolution: Based on the above formulas, the

predefined graph and the adaptive graph can be obtained, which
can reflect the spatial correlation of all variables from different
perspectives. Then, we combine the adaptive graph convolution and
layer normalization to fuse these graph information. The formula
of the adaptive graph convolution is given as follows:

𝑍 = 𝐹𝐿𝑁 (𝐴𝑝𝑟𝑒𝑋
𝐼𝐴
𝑀 𝑊1 + 𝑏1 +𝐴𝑎𝑑𝑎𝑝𝑋

𝐼𝐴
𝑀 𝑊2 + 𝑏2), (7)

where, 𝑋 𝐼𝐴
𝑀

represents the variable representation obtained by the
IA.𝑊 and𝑏 stand for weight and bias respectively. 𝐹𝐿𝑁 (·) stands for
the layer normalization. Through above methods, the information
of adaptive graph and predefined graph is fused.

3.5 GinAR
The main idea of GinAR is to integrate the proposed interpolation
attention and adaptive graph convolution into the simple recursive
units. Next, we introduce the composition of the GinAR cell and
the overall modeling process of GinAR in detail.

GinAR cell: The GinAR cell is the most basic component of
GinAR. Specifically, we introduce IA into the simple recursive unit
cell to recover missing variables. Besides, we use the AGCN to
replace all full connected layers in the SRU cell, enhancing the
ability to correct spatial-temporal dependencies. The formula for
each GinAR cell is given as follows:

𝑥 𝐼𝐴𝑇 = 𝐹𝐼𝐴 (𝑥𝑇 ), (8)

𝑓𝑇 = GeLU(𝐹𝐿𝑁 (𝐴𝑝𝑟𝑒𝑥
𝐼𝐴
𝑇 𝑊𝑓 1 + 𝑏 𝑓 1 +𝐴𝑎𝑑𝑎𝑝𝑥

𝐼𝐴
𝑇 𝑊𝑓 2 + 𝑏 𝑓 2)), (9)

𝑟𝑇 = GeLU(𝐹𝐿𝑁 (𝐴𝑝𝑟𝑒𝑥
𝐼𝐴
𝑇 𝑊𝑟1 + 𝑏𝑟1 +𝐴𝑎𝑑𝑎𝑝𝑥

𝐼𝐴
𝑇 𝑊𝑟2 + 𝑏𝑟2)), (10)

𝑐𝑇 = (1 − 𝑓𝑇 ) ⊙ 𝐹𝐿𝑁 (𝐴𝑝𝑟𝑒𝑥
𝐼𝐴
𝑇 𝑊𝑐1+

𝐴𝑎𝑑𝑎𝑝𝑥
𝐼𝐴
𝑇 𝑊𝑐2) + 𝑓𝑇 ⊙ 𝑐𝑇−1,

(11)

ℎ𝑇 = 𝑟𝑇 ⊙ ELU(𝑐𝑇 ) + (1 − 𝑟𝑇 ) ⊙ 𝑥 𝐼𝐴𝑇 , (12)
where, 𝑟𝑇 stands for reset gate. 𝑓𝑇 stands for forget gate. 𝑐𝑇 rep-
resents the cell state of the current GinAR cell. ℎ𝑇 is the hidden
state of the current GinAR cell. ⊙ stands for the Hadamard product.
GeLU(·) and ELU(·) are activation functions. 𝐹𝐼𝐴 (·) stands for the
interpolation attention.

GinAR: The main components of GinAR include 𝑛 GinAR layers
and an MLP-based decoder. Each GinAR layer contains multiple
GinAR cells. The modeling process of GinAR is given as follows:

Step 1: The original input feature 𝑋 ∈ 𝑅𝑁 ∗𝐻∗𝐶 is preprocessed
and the input feature 𝑋𝑀 ∈ 𝑅𝑁 ∗𝐻∗𝐶 for modeling is obtained. The
values of the 𝑀 variables in the 𝑁 variables of the input feature
𝑋𝑀 ∈ 𝑅𝑁 ∗𝐻∗𝐶 is 0.

𝑋𝑀 = [𝑥1, 𝑥2, ..., 𝑥𝐻 ], 𝑥 ∈ 𝑅𝑁 ∗𝐶 , (13)
where, 𝐻 is the length of historical observation. 𝑁 is the number
of variables. 𝐿 is the length of future forecasting results. 𝐶 stands
for embedding size.
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Step 2: 𝑋𝑀 is passed to the first GinAR layer. Each GinAR layer
contains 𝐻 GinAR cells, which are used to model 𝑥1 to 𝑥𝐻 .

Step 3: Initialize a cell state 𝑐0. 𝑥1 and 𝑐0 are passed to the first
GinAR cell in the GinAR layer. Based on the calculation formula of
GinAR cell, the hidden state ℎ11 of the current cell and the cell state
𝑐1 are obtained. 𝑐1 and 𝑥2 are passed to the next GinAR cell.

Step 4: Repeat Step 3 to obtain 𝐻 hidden states of all GinAR cells
in the first GinAR layer. These hidden states ℎ1 are used as the
input features to the next GinAR layer.

ℎ1 = [ℎ11, ℎ
1
2, ..., ℎ

1
𝐻 ], (14)

Step 5: Repeat steps 3 to 4 until all hidden states of 𝑛 GinAR
layers are obtained. The hidden state of the last cell in each GinAR
layer is extracted. These hidden states are concatenated together
as a new tensor ℎ𝑛

𝑎𝑙𝑙
, which is shown as follows:

ℎ𝑛
𝑎𝑙𝑙

= [ℎ1𝐻 , ℎ
2
𝐻 , ..., ℎ

𝑛
𝐻 ], ℎ𝑛

𝑎𝑙𝑙
∈ 𝑅𝑁 ∗𝐶′∗𝑛, (15)

Step 6: ℎ𝑛
𝑎𝑙𝑙

is passed to the MLP-based generative decoder. And
the final forecasting result 𝑌 ∈ 𝑅𝑁 ∗𝐿 is obtained.

𝑌 = 𝐹𝐶 (ReLU(𝐹𝐶 (ℎ𝑛
𝑎𝑙𝑙

))), (16)

4 EXPERIMENTAL STUDY
4.1 Experimental Design
Datasets. Five real-world datasets are selected to conduct compar-
ative experiments, including two traffic speed datasets(METR-LA
and PEMS-BAY)1, two traffic flow datasets (PEMS04 and PEMS08)2
and an air quality dataset (China AQI)3.

Baselines. In order to fully compare and analyze the perfor-
mance of the proposed GinAR, eleven existing SOTA methods are
selected as the main baselines, which include forecasting models
(MegaCRN [29], DSformer [78] and STID [50]), and forecastingmod-
els with data recovery components (LGnet [58], TriD-MAE [80], GC-
VRNN [70], and BiTGraph [9]). Besides, we design two-phase mod-
els (DCRNN [35] + GPT4TS [84], DFDGCN [34] + TimesNet [65]
and MTGNN [68] + GRIN [17], FourierGNN [74]+GATGPT[14]) as
additional baselines to further demonstrate GinAR’s effect.

Setting. Table 1 shows the main hyperparameters of the pro-
posed model. We design experiments from the following aspects:
(1) Our code is available at this link4 . (2) All datasets are uniformly
divided into training sets, validation sets and test sets according to
the ratio in the reference [49]. (3) We set the history/future length
based on the existing work [29, 34]. The history length and future
length of GinAR are both 12. Metrics are the average of 12-step
forecasting results. (4) We randomly set mask variables according
to the ratio of 25%, 50%, 75% and 90%. Values of the masked variable
are uniformly treated as 0. Besides, the experiment was repeated
with 5 different random seeds for each missing rate. The final met-
rics are the mean values of repeated experiments. (5) To ensure
the fairness of experiments, we train the two-stage model in two
ways: first, train the two models separately. Second, based on the

1https://github.com/liyaguang/DCRNN
2https://github.com/guoshnBJTU/ASTGNN/tree/main/data
3https://quotsoft.net/air/
4https://github.com/ChengqingYu/GinAR

Table 1: Values of the corresponding hyperparameters for
different missing rate.

Config Values
(25%, 50%, 75%, 90%)

loss function L1 Loss
optimizer Adam

learning rate 0.006
embedding size 32/32/16/16

variable embedding size 16/16/8/8
number of layers 2/2/3/3

dropout 0.15
learning rate schedule MultiStepLR

clip gradient normalization 5
milestone [1,15,40,70,90]
gamme 0.5

batch size 16
epoch 100

reference [70], the two models are spliced together for training. The
final metrics are the optimal results.

Metrics. To comprehensively evaluate the forecasting perfor-
mance of different models, this paper utilizes three classical metrics:
Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and
Mean Absolute Percentage Error (MAPE) [39].

4.2 Main Results
Table 2 gives the performance comparison results of all baselines
and GinAR on five datasets (The best results are shown in bold).
Based on results, the following conclusions can be obtained: (1)
Compared with SOTA forecasting models, all two-stage forecasting
models can achieve better forecasting results. The main reason
is that imputation methods use normal variables to recover miss-
ing variables, which reduces the impact of missing variables on
the forecasting model. However, the error accumulation problem
exists in two-stage models, which limits the performance of the
downstream predictors. (2) The forecasting models with data re-
covery components can work better than other baselines. On the
one hand, they address the problem that one-stage models cannot
handle missing data. On the other hand, they avoid the error ac-
cumulation problem of two-stage models. (3) GinAR can achieve
optimal experimental results on all datasets and all settings. Based
on interpolation attention, adaptive graph convolution and RNN-
based framework, the GinAR can realize missing variable recovery,
spatial-temporal correlation reconstruction and end-to-end fore-
casting. Compared with one-stage models and two-stage models,
GinAR can avoid the problem of error accumulation and produce
more accurate spatial-temporal dependencies. Therefore, GinAR
can achieve better results than all baselines in MTSF with variable
missing. To further evaluate the effects of each component in Gi-
nAR, we conduct ablation experiments. Besides, to demonstrate the
effect of the end-to-end framework, we analyze the performance
recovery effect of interpolation attention on MLP-based models.
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Table 2: Performance comparison results of all baselines and the proposed model on all datasets.

Datasets Methods Missing rate 25% Missing rate 50% Missing rate 75% Missing rate 90%
RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE

METR-LA

STID 10.31 17.85 5.05 10.73 18.88 5.35 11.35 20.57 5.84 12.06 23.17 6.24
DSformer 7.69 11.05 4.02 8.27 12.78 4.38 9.21 14.59 4.77 10.15 17.69 5.02
MegaCRN 7.43 10.47 3.81 7.87 11.02 3.94 8.28 12.13 4.24 8.72 13.54 4.58

DCRNN+GPT4TS 7.41 10.72 3.78 7.91 11.61 3.98 8.16 11.93 4.15 8.31 12.18 4.29
DFDGCN+TimesNet 7.42 10.42 3.72 7.68 11.45 3.89 8.11 11.75 4.14 8.33 12.24 4.34

MTGNN+GRIN 7.28 10.48 3.69 7.43 11.22 3.77 8.05 11.58 4.12 8.29 12.14 4.25
FourierGNN+GATGPT 7.40 10.87 3.71 7.84 11.75 3.82 8.25 12.25 4.21 8.37 12.28 4.33

LGnet 7.52 10.97 3.95 8.03 11.83 4.17 8.52 13.09 4.42 9.15 14.38 4.79
GC-VRNN 7.04 10.51 3.68 7.73 10.98 3.87 8.19 11.71 4.17 8.35 12.29 4.32
TriD-MAE 7.15 10.37 3.64 7.58 11.07 3.79 7.92 11.13 3.92 8.22 11.92 4.11
BiTGraph 6.74 10.25 3.61 7.32 10.79 3.69 7.63 11.04 3.74 8.03 11.78 3.91
Proposed 6.55 10.12 3.56 7.14 10.42 3.61 7.39 10.71 3.70 7.84 11.25 3.87

PEMS-BAY

STID 7.13 7.78 3.01 7.86 8.21 3.39 8.26 9.24 3.51 8.65 10.07 3.78
DSformer 6.32 7.15 2.91 6.46 7.73 3.08 8.15 9.06 3.45 9.06 10.23 3.72
MegaCRN 5.93 7.03 2.85 7.36 7.75 3.02 7.75 8.77 3.35 8.25 9.23 3.54

DCRNN+GPT4TS 5.54 6.24 2.63 6.22 6.75 2.87 7.14 7.82 3.09 7.69 8.82 3.31
DFDGCN+TimesNet 5.39 6.17 2.58 6.17 7.03 2.74 6.96 7.59 3.07 7.15 8.34 3.27

MTGNN+GRIN 5.78 5.73 2.65 6.19 6.55 2.83 7.06 7.75 3.02 7.26 8.45 3.22
FourierGNN+GATGPT 5.21 5.46 2.40 5.93 5.96 2.71 6.85 7.58 2.98 7.44 9.07 3.28

LGnet 6.02 7.19 2.88 6.74 8.15 3.14 8.08 9.18 3.43 8.92 9.83 3.67
GC-VRNN 4.93 5.37 2.39 5.34 5.86 2.64 6.08 6.94 2.87 7.32 7.94 3.12
TriD-MAE 5.17 5.48 2.46 5.53 6.12 2.69 5.97 6.85 2.79 7.02 7.63 3.02
BiTGraph 4.52 5.16 2.17 5.06 6.07 2.44 5.79 6.68 2.61 6.75 7.42 2.83
Proposed 4.34 4.90 2.10 4.78 5.88 2.35 5.48 6.17 2.54 6.43 6.94 2.77

PEMS04

STID 71.39 50.88 41.96 95.09 93.63 63.73 113.02 124.11 82.47 123.30 149.68 94.72
DSformer 50.15 20.88 32.86 51.51 21.35 33.31 54.91 23.25 37.28 59.18 25.62 40.31
MegaCRN 42.22 20.18 28.26 47.07 21.29 31.48 47.95 22.03 33.58 52.17 23.42 36.14

DCRNN+GPT4TS 40.03 17.77 25.17 41.64 18.21 26.56 43.71 19.18 28.54 46.17 21.27 31.42
DFDGCN+TimesNet 39.48 17.40 24.43 41.18 18.49 26.09 42.81 19.91 28.29 45.93 21.43 30.98

MTGNN+GRIN 39.67 18.71 24.84 41.91 19.18 26.95 44.36 20.90 28.04 45.88 21.04 30.61
FourierGNN+GATGPT 40.92 19.61 25.58 42.35 20.55 27.31 45.17 22.20 29.87 48.83 23.65 32.16

LGnet 42.64 18.42 26.53 46.39 21.30 30.81 52.05 24.83 33.94 55.12 23.74 36.29
GC-VRNN 39.75 16.82 23.57 41.34 17.83 26.43 43.82 18.67 27.72 45.12 20.43 30.06
TriD-MAE 39.83 16.98 24.15 40.65 17.52 25.89 41.90 18.04 26.95 44.23 20.05 29.54
BiTGraph 38.94 16.75 23.01 40.03 17.34 24.15 41.69 17.92 26.33 43.37 19.08 28.71
Proposed 38.22 16.45 22.52 39.02 17.04 23.78 41.53 17.58 25.98 42.82 18.31 28.20

PEMS08

STID 58.81 31.71 32.88 79.41 51.74 49.71 101.63 74.47 69.06 113.20 86.54 81.64
DSformer 38.38 19.24 27.74 42.49 23.79 30.47 51.57 25.18 35.21 55.34 32.61 38.79
MegaCRN 39.29 17.42 26.04 43.43 21.30 30.68 48.37 21.34 32.23 52.75 24.64 34.52

DCRNN+GPT4TS 36.58 15.96 24.64 41.79 18.73 27.96 44.82 19.79 29.62 46.22 22.96 31.78
DFDGCN+TimesNet 36.29 15.56 24.26 39.05 19.42 25.39 42.67 20.74 28.30 45.83 21.59 30.46

MTGNN+GRIN 36.65 15.17 24.08 37.64 17.41 25.78 40.51 18.52 27.45 42.79 21.33 29.15
FourierGNN+GATGPT 35.54 15.35 23.77 37.42 16.86 25.53 39.44 17.95 26.89 41.44 20.61 29.11

LGnet 37.54 22.18 26.51 47.23 21.91 32.04 50.38 21.43 33.65 52.06 25.71 35.48
GC-VRNN 35.17 14.69 23.25 36.40 15.85 24.27 39.67 16.06 26.32 41.98 20.54 28.46
TriD-MAE 33.15 14.25 21.53 35.95 15.32 23.18 37.64 15.58 24.89 39.25 16.43 26.18
BiTGraph 31.89 14.05 20.65 35.06 14.62 22.44 36.98 15.04 23.38 39.06 16.18 25.01
Proposed 31.34 13.76 20.41 34.53 14.21 22.01 36.04 14.77 23.10 38.87 15.82 24.83

China AQI

STID 31.97 45.19 18.54 34.28 48.48 20.32 36.36 55.39 22.79 40.28 62.41 25.97
DSformer 28.22 44.81 17.73 30.35 48.09 19.06 33.22 52.05 20.63 35.72 57.31 23.17
MegaCRN 28.41 33.35 15.32 29.52 35.86 16.51 33.09 48.96 19.66 35.74 53.28 22.61

DCRNN+GPT4TS 28.48 32.18 15.14 30.83 35.24 16.82 31.99 37.22 17.82 34.28 50.64 21.78
DFDGCN+TimesNet 26.33 29.73 14.62 29.30 32.85 15.76 30.51 38.68 17.85 33.19 51.28 21.06

MTGNN+GRIN 27.13 33.29 14.89 30.02 37.82 16.37 31.97 39.29 17.94 34.15 50.23 20.02
FourierGNN+GATGPT 27.17 32.82 14.65 30.77 38.37 16.13 31.86 39.90 18.01 34.17 50.94 20.18

LGnet 27.76 38.92 16.02 31.03 44.95 18.39 34.09 49.63 20.36 35.54 57.18 23.24
GC-VRNN 26.88 31.88 14.66 28.67 34.21 15.70 30.57 37.66 16.99 32.91 48.73 19.24
TriD-MAE 26.18 29.09 14.51 28.96 32.94 15.74 29.84 35.76 16.79 32.68 45.76 18.04
BiTGraph 25.79 28.94 13.85 27.45 31.36 14.52 29.01 33.58 15.62 31.85 38.17 17.06
Proposed 25.51 28.27 13.72 26.81 29.56 14.33 27.96 31.86 15.39 30.97 36.30 16.83

4.3 Ablation Experiment
GinAR has three important components: interpolation attention,
predefined graph, and adaptive graph learning. To demonstrate
the importance of these components, ablation experiments are
conducted from the following three perspectives: (1) w/o ia: We

remove the interpolation attention. (2) w/o pg: The predefined
graph is deleted. It means that GinAR only uses the adaptive graph
to construct spatial correlations. (3) w/o ag: The adaptive graph is
removed. It means that spatial correlations are determined mainly
through prior knowledge. Figure 4 shows the results of the ablation
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Figure 4: The results of the ablation experiment.

experiment. Based on the experimental results, the following con-
clusions can be drawn: (1) When the missing rate is low, deleting
the predefined graph has a great impact on the forecasting result.
However, when the missing rate is large, deleting the predefined
graph has little impact on the result. (2) When the missing rate
is large, deleting the adaptive graph can significantly reduce the
forecasting accuracy. The main reason is that when there are more
missing variables, the adaptive graph can better analyze the spatial
correlation according to the characteristics of the data. Therefore,
the adaptive graph plays an important role in this task. (3) When
IA is removed, the performance of GinAR decreases significantly,
proving that IA is the most important component. The main reason
is that IA realizes the recovery of missing variables, which provides
an important support for correcting spatial-temporal dependencies
and avoiding error accumulation. To further analysis the effect of
the IA, we compare IA with imputation methods in next section.

4.4 Performance Evaluation of IA
As one of the most important components proposed in this paper, it
is important to further evaluate the effect of interpolation attention.
In addition, it is important to further evaluate the effectiveness of
the end-to-end framework. Therefore, this section compares the
performance improvement effects of IA, GRIN, GATGPT, GPT4TS
and TimesNet on STID. Specifically, TimesNet, GATGPT, GPT4TS
and GRIN adopt the two-stage modeling framework (imputation
and forecasting) to optimize the performance of STID. IA uses the
end-to-end modeling framework to optimize the effects of STID.
Table 3 shows the performance comparison results (MAE values)
of these models (The best results are shown in bold). Based on
the experimental results, the following conclusions can be drawn:
(1) Compared with other methods, TimesNet has minimal perfor-
mance improvements to STID. The main reason is that TimesNet
uses temporal information to recover missing variables, without
fully analyzing correspondences between missing variables and
normal variables. (2) The proposed IA method and other imputa-
tion methods can effectively improve the forecasting effect of STID.
(3) IA and GRIN can recover the performance of STID and obtain
better forecasting results than other imputation methods. The main
reason is that IA and GRIN adopt the graph-based framework to
effectively reconstruct the spatial correlation between missing vari-
ables and normal variables, and then recover the missing variable
data based on the normal variable. (4) Compared with other two-
stage models, the end-to-end framework based on IA and STID can

Table 3: MAE values of interpolation attention and other
imputation methods.

Datasets Methods Missing rate
25% 50% 75% 90%

METR-LA

STID+GPT4TS 4.05 4.32 4.76 5.02
STID+TimesNet 4.54 4.64 5.13 5.44
STID+GATGPT 3.96 4.19 4.39 4.57
STID+GRIN 3.83 3.98 4.21 4.35
STID+IA 3.71 3.90 4.19 4.31

PEMS08

STID+GPT4TS 23.84 24.91 26.79 28.51
STID+TimesNet 24.55 25.24 27.70 29.69
STID+GATGPT 22.49 24.18 26.43 27.76
STID+GRIN 22.13 23.65 25.93 27.18
STID+IA 21.67 23.39 25.85 26.96

China AQI

STID+GPT4TS 15.37 16.45 17.79 19.25
STID+TimesNet 15.81 17.14 18.33 19.74
STID+GATGPT 14.77 15.64 16.98 18.29
STID+GRIN 14.25 15.13 16.48 17.92
STID+IA 13.75 14.87 16.25 17.83

achieve good forecasting results. On the one hand, the two-stage
models need to realize the feature reconstruction, and the problem
of error accumulation results in the decline of forecasting accuracy.
On the other hand, IA realizes adaptive induction by generating
correspondences between normal variables and missing variables.
Therefore, the end-to-end framework combining IA and STID can
achieve better results.

4.5 Hyperparameter Experiment
The setting of the superparameter can affect the forecasting effect of
the GinAR. In this section, we evaluate the influence of three main
hyperparameters on the experimental results, including embedding
size, variable embedding size, and number of layers. Figure 5 shows
the influence of different hyperparameters on the experimental
results (PEMS04 dataset). Based on the experimental results, the
following conclusions can be obtained: (1) The variable embedding
size has the least influence on the forecasting results. It proves
that the adaptive graph with good performance can be generated
without a large number of parameters. (2) The embedding size can
be increased appropriately when the missing rate is small. And the
embedding size cannot be too large when the missing rate is large.
The main reason is that when the missing rate is large, the large
embedding size can lead to overfitting, thus affecting the forecasting
accuracy. (3) The number of layers has the greatest influence on
the forecasting result. Too few layers can not adequately mine and
analyze the data. Too many layers can lead to problems such as
overfitting. Therefore, the best forecasting results is achieved when
the number of layers is set to 2 or 3.

4.6 Visualization
To prove that GinAR can effectively predict the future values of
all variables, this section visualizes the forecasting results from
the spatial dimension. Figure 6 gives the visualization of the input
features and forecasting results of GinAR on different missing rates
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Figure 5: Hyperparameter experiment results (PEMS04).

(China AQI dataset). Based on the visualization results, we can get
the following conclusions: (1) As shown in Figure 6 (a), Figure 6
(b) and Figure 6 (c), GinAR can accurately predict the AQI value
of all variables when the missing rate is not particularly large. (2)
As shown in Figure 6 (a), Figure 6 (d) and Figure 6 (e), even though
the number of normal variables is very sparse, GinAR can still
accurately predict the spatial distribution of the AQI data. (3) GinAR
can make full use of normal variables to realize accurate spatial-
temporal forecasting for all variables. The visualization results can
further demonstrate the practical value of GinAR.

5 CONCLUSION AND FUTUREWORK
In this paper, we try to address a new challenging task: MTSF with
variable missing. In this task, to solve the problems of producing
incorrect spatial-temporal dependencies and error accumulation in
existing models, we carefully design two key components (Interpo-
lation Attention and Adaptive Graph Convolution) and use them
to replace all fully connected layers in the simple recursive unit. In
this way, we propose the Graph Interpolation Attention Recursive
Network based on the end-to-end framework, which can simul-
taneously recover all missing variables, correct spatial-temporal
dependencies, and predict the future values of all variables. Experi-
mental results on five real-world datasets demonstrate the practical
value of our model, and even when only 10% of variables are normal,
it can predict the future values of all the variables. In the future, we

Figure 6: Visualization of the input features and forecasting
results of GinAR on different missing rates (China AQI
dataset). As the missing rate increases, the input features
become more and more sparse. However, the forecasting
performence of GinAR does not deteriorate significantly.

will optimize the efficiency of GinAR and work on datasets with
larger spatial dimensions and more complex spatial correlations.
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A EXPERIMENTAL DETAILS
A.1 Datasets
Table 4 shows the statistics of these datasets. A brief overview of
all datasets is shown as follows:

• METR-LA: It is a traffic speed dataset collected by loop-
detectors located on the LA County road network, which
contains data collected by 207 sensors from Mar 1st, 2012
to Jun 30th, 2012. Each time series is sampled at a 5-minute
interval, totaling 34272 time slices.

• PEMS-BAY: It is a traffic speed dataset collected by Califor-
nia Transportation Agencies (CalTrans) Performance Mea-
surement System (PeMS), which contains data collected by
325 sensors from Jan 1st, 2017 to May 31th, 2017. Each time
series is sampled at a 5-minute interval, totaling 52116 time
slices.
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Table 4: The statistics of the five datasets.

Datasets Variates Timesteps Granularity

MET-LA 207 34272 5minutes
PEMS-BAY 325 52116 5minutes
PEMS04 307 16992 5minutes
PEMS08 170 17856 5minutes

China AQI 350 59710 1hour

• PEMS04: It is a traffic flow dataset collected by CalTrans
PeMS, which contains data collected by 307 sensors from
January 1st, 2018 to February 28th, 2018. Each time series is
sampled at a 5-minute interval, totaling 16992 time slices.

• PEMS08: It is a traffic flow dataset collected by CalTrans
PeMS, which contains data collected by 170 sensors from
July 1st, 2018 to Aug 31th, 2018. Each time series is sampled
at a 5-minute interval, totaling 17833 time slices.

• China AQI: It is an air quality dataset collected by China
Environmental Monitoring Station, which contains data col-
lected by 350 cities in China from January 2015 to December
2022. Each time series is sampled at a 1 hour interval, totaling
59710 time slices.

A.2 Baselines
All baselines are introduced as follows:

• STID: It uses spatial-temporal identity embedding to im-
prove the ability of MLP to mine multivariate time series.

• DSformer: It uses double sampling block and temproal vari-
able attention block to mine spatiotemporal correlation and
improve prediction performance.

• MegaCRN: This method uses memory back to improve the
ability of AGCRN to model spatial correlation.

• DCRNN+GPT4TS : It first uses GPT4TS to realize the impu-
tation of missing variables, and then uses DCRNN to model
the processed data.

• DFDGCN + TimesNet: It first uses TimesNet to realize the
imputation of missing variables, and then uses DFDGCN to
model the processed data.

• MTGNN+GRIN: It first uses GRIN to realize the imputation
of missing variables, and then uses MTGNN to model the
processed data.

• FourierGNN+GATGPT : It first uses GATGPT to realize the
imputation of missing variables, and then uses FourierGNN
to model the processed data.

• LGnet: It uses thememory component to effectively improve
the performance of long and short term memory networks.

• GC-VRNN : It combines the Multi-Space Graph Neural Net-
work with Conditional Variational Recurrent Neural to real-
ize MTSF with missing values.

• TriD-MAE: It uses MAE to optimize the ability of the TCN
model to realize MTSF with missing values.

• BiTGraph: It proposes a Biased Temporal ConvolutionGraph
Network that jointly captures the temporal dependencies
and spatial structure.

B EFFICIENCY
In this section, we compare the efficiency of GinAR with that of sev-
eral baselines (GC-VRNN, TriD-MAE, MTGNN + GRIN, DFDGCN
+ TimesNet and DCRNN + GPT4TS) on the PEMS08 dataset. To en-
sure the fairness of the experiment, we compare the mean training
time of each epoch of each model. The experimental equipment is
the Intel(R) Xeon(R) Gold 5217 CPU @ 3.00GHz, 128G RAM com-
puting server with RTX 3090 graphics card. The batch size is set
to 16. Based on Figure 7, it can be found that the training time of
GinAR is not large. Compared with several two-stage models, the
GinAR does not require the imputation stage, which reduces the
overall training time. Besides, although the training time of GinAR
is greater than that of the one-stage models, it solves the problem of
variable missing, which can improve its forecasting performance.

Figure 7: Training time for each epoch of different models.

C NOTATIONS
Some of the commonly used notations are presented in Table 5.

Table 5: Frequently used notation.

Notation size Definitions

𝐻 Constant The length of historical observation
𝐿 Constant The length of future forecasting results
𝐵 Constant Batch size
𝑁 Constant Number of variables
𝑀 Constant Number of missing variables
𝐶 Constant Embedding size
𝑑 Constant Variable embedding size
𝑛 Constant Number of GinAR layers
𝑋 𝑁 ∗𝐻 ∗𝐶 Input features
𝑋𝑀 𝑁 ∗𝐻 ∗𝐶 Input features with𝑀 missing variables
𝑌 𝑁 ∗ 𝐿 Forecasting results

𝐴𝑝𝑟𝑒 𝑁 ∗ 𝑁 Predefined graph
𝐴𝑎𝑑𝑎𝑝 𝑁 ∗ 𝑁 Adaptive graph
𝐸𝑎 𝑁 ∗ 𝑑 Variable embedding of adaptive graph
𝐹𝐿𝑁 Functions Layer normalization
𝐹𝐶 Functions Fully connected layer
ReLU Functions Activation function ReLU
ELU Functions Activation function ELU
GeLU Functions Activation function GeLU

LeakyReLU Functions Activation function LeakyReLU
softmax Functions Activation function softmax
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