
AdapTraj: A Multi-Source Domain Generalization
Framework for Multi-Agent Trajectory Prediction

Tangwen Qian1,3, Yile Chen2∗, Gao Cong2, Yongjun Xu1,3, Fei Wang1,3∗
1Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

2School of Computer Science and Engineering, Nanyang Technological University, Singapore
3University of Chinese Academy of Sciences, Beijing, China

{qiantangwen, xyj, wangfei}@ict.ac.cn, yile001@e.ntu.edu.sg, gaocong@ntu.edu.sg

Abstract—Multi-agent trajectory prediction, as a critical task
in modeling complex interactions of objects in dynamic systems,
has attracted significant research attention in recent years.
Despite the promising advances, existing studies all follow the as-
sumption that data distribution observed during model learning
matches that encountered in real-world deployments. However,
this assumption often does not hold in practice, as inherent
distribution shifts might exist in the mobility patterns for deploy-
ment environments, thus leading to poor domain generalization
and performance degradation. Consequently, it is appealing to
leverage trajectories from multiple source domains to mitigate
such discrepancies for multi-agent trajectory prediction task.
However, the development of multi-source domain generalization
in this task presents two notable issues: (1) negative transfer;
(2) inadequate modeling for external factors. To address these
issues, we propose a new causal formulation to explicitly model
four types of features: domain-invariant and domain-specific
features for both the focal agent and neighboring agents. Building
upon the new formulation, we propose AdapTraj, a multi-source
domain generalization framework specifically tailored for multi-
agent trajectory prediction. AdapTraj serves as a plug-and-play
module that is adaptable to a variety of models. Extensive
experiments on four datasets with different domains demonstrate
that AdapTraj consistently outperforms other baselines by a
substantial margin.

Index Terms—multi-agent trajectory prediction, multi-source
domain generalization, distribution shift

I. INTRODUCTION

As a critical and fundamental task for planning and tracking

in autonomous systems under dynamic environments, trajec-

tory prediction of moving objects (e.g., cars, pedestrians, and

cyclists) has attracted significant research attention. Numerous

methods have been proposed to tackle this problem with a

notable emphasis on human motion forecasting due to its

prevalence in various downstream scenarios [1]. Apart from

the consideration of individual mobility patterns derived from

past trajectories, the interactions among objects, such as colli-

sion avoidance and gathering behaviors, also exert substantial

influence on human motion. To this end, recent studies [2]–

[5] have demonstrated the effectiveness of incorporating the

interaction modeling among different objects (i.e., agents)

in this task, which is commonly referred to as multi-agent

trajectory prediction.

∗ Corresponding Author.

TABLE I
STATISTICAL ANALYSIS OF FOUR DISTINCT DATASETS. WE PRESENT THE

AVERAGE AND STANDARD DEVIATION FOR SEVERAL TRAJECTORY

CHARACTERISTICS ALONG HORIZONTAL (X) AND VERTICAL (Y) AXES.

Datasets ETH&UCY L-CAS SYI SDD

# sequences 3856 2499 5152 35634
Avg/Std num 9.09/10.01 7.88/3.23 35.17/20.81 17.82/15.12
Avg/Std v(x) 0.279/0.170 0.104/0.078 0.306/0.063 0.295/0.204
Avg/Std v(y) 0.090/0.070 0.041/0.024 1.087/0.185 0.187/0.156
Avg/Std a(x) 0.027/0.027 0.044/0.028 0.082/0.018 0.057/0.042
Avg/Std a(y) 0.027/0.024 0.044/0.025 0.339/0.062 0.064/0.053

Despite the prominent results achieved by these studies, they

all assume the same data distribution between the training

and testing stages. In other words, the trained models can

be seamlessly deployed in environments that have similar

characteristics to the training instances. However, this assump-

tion often does not hold in practice, as inherent distribution

shifts might exist in the mobility patterns for dynamic ever-

changing deployment environments. To quantitatively illustrate

the presence of such distribution shifts, we present the statis-

tics for four commonly utilized human trajectory datasets in

Tab. I. We observe significant discrepancies in human motion

characteristics (e.g., crowd density (num), velocity (v), and

acceleration(a)) across them. For instance, the SYI dataset

exhibits the highest average velocity and acceleration on y-

axis, which is approximately 26 and 7 times greater than that

of the L-CAS dataset respectively.

As a result, such a distribution shift issue poses a signifi-

cant challenge to existing methods for multi-agent trajectory

prediction. Existing methods exhibit a significant decline in

performance when applied to the instances from a different

domain (details are in Sec. II-B). It seems that training a

distinct model for each domain could serve as a solution to this

issue. However, this approach is neither efficient nor feasible

given the diversity of scenarios and mobility patterns in real

use cases. In particular, given that not every environment will

be equipped with sensors or cameras to record trajectories, it is

unlikely to have trained models for every scenario or domain.

Moreover, even when sufficient training data is available, this

idea becomes progressively intractable. The increased number

of domains would lead to the unbearable growth in the model

sizes and the cost of training time. Therefore, this indicates the

necessity for a generic model that can handle trajectories with

varying characteristics, and even those unseen domains that
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have not been previously encountered in training instances.

In light of this, limited research has been done to address the

challenge posed by the distribution shift issue. For example,

Counter [6] and CausalMotion [7] are devised to learn a

transferable model from trajectories in one domain and retain

its effectiveness when applied to another domain, thereby

achieving single-source domain generalization. Unfortunately,

the relatively limited number of instances available for a single

domain, coupled with the substantial discrepancies in trajec-

tory characteristics between the source and the target domain,

makes it difficult for these methods to sufficiently encode the

required knowledge about the variations present in target do-

mains. Therefore, it is appealing to leverage trajectories from

multiple source domains for multi-agent trajectory prediction

problem for two reasons: (1) since deep learning models are

usually data-hungry for capturing the domain knowledge, a

larger number of trajectories provide more opportunities to

model a variety of influential factors (e.g., environment bias,

and diverse motion patterns) required for effective perfor-

mance. Moreover, the presence of trajectories characterized by

different distributions offers the opportunity to better capture

both the invariant features and the specific features; (2) despite

the discrepancies in trajectory characteristics across domains,

most domains are correlated with each other [8]–[10] in

the sense that they all adhere to certain intrinsic patterns

which are implicitly hidden within mobility regardless of the

domain. These patterns include the immutable physical laws

and the conventions of social norms, and influence how people

move and interact in space [2], [3], [11]. However, it is still

challenging to apply multi-source domain generalization due

to two issues.

The first issue is the occurrence of negative transfer from

multiple source domains. While multiple source domains can

provide an increased quantity of data instances, it is usually

problematic to directly fuse the training data from these

sources to learn invariant mobility patterns across domains.

Instead, without any constraints, the model tends to simply

average the discrepancies in multiple source domains, which

usually leads to inferior model performance (details are in

Sec. II-B).

The second issue is the inadequate modeling for external
factors. Counter [6] observes an obvious gap of external

factors among different domains and proposes a counterfactual

analysis method to remove the dependence of external factors

(e.g., influences from neighboring agents) and only utilize the

invariant features in individual trajectories. Nevertheless, hu-

man motion is not only decided by internal initiatives, but also

greatly affected by external factors, especially the movements

of surrounding agents. In this case, while noise features are

eliminated, this method also ignores some reasonable influ-

ences hidden in external factors. Moreover, CausalMotion [7]

endeavors to model external factors from a causal perspective.

However, it is designed to leverage only a single source

domain, thus not capable of uncovering the invariant features

shared by external factors that are common across multiple

domains.

To address these two issues, we propose a multi-source

domain generalization framework tailored for multi-agent tra-

jectory prediction, named AdapTraj, which serves as a plug-

and-play module that is adaptable to a variety of models.

To mitigate the first issue, apart from obtaining invariant

features that are consistent across domains, we aim to adap-
tively aggregate the domain-specific features based on the

discrepancies within each source domain, thus capturing a

more diverse range of personalized patterns overlooked in

invariant features. In particular, we employ extractors with

orthogonal constraints to split the knowledge contained in each

domain into domain-invariant and domain-specific features.

Leveraging these disentangled features, we devise a teacher-

student learning process where the proposed aggregator can

utilize collective experiences from the trained extractors to

obtain effective domain-specific features to accommodate

trajectories presented by unseen domains during inference.

Furthermore, to address the second issue, as opposed to the

oversimplified assumption employed in [6], [7], we propose

a new formulation that considers both the domain-invariant

features (e.g., collision avoidance and gathering behaviors) and

domain-specific features (e.g., yielding right-of-way or left-of-

way) of neighboring agents, which are the dominating external

factors. We devise extractors to produce these two types of

features, which are then fused with the corresponding features

derived from the focal agent to serve as the distilled knowledge

from multiple source domains. Finally, given a new trajectory

from an unseen domain, the future trajectory is generated by

integrating its historical information and neighbor interactions,

along with the two types of features that encode the knowledge

about the invariant and diverse patterns across domains. Our

model serves as a holistic solution which integrates principles

of domain generalization while addressing the distinct require-

ments of multi-agent trajectory prediction task.

The contributions are summarized as follows:

• We identify the limitations through quantitative experiments

(i.e., Tab. II and Tab. III) on how to obtain a generalizable

model that is effective at tackling unseen examples in multi-

agent trajectory prediction task. Consequently, we propose

a plug-and-play framework, named AdapTraj, that can be

incorporated into existing deep learning based methods to

harness the knowledge from multiple domains, thus achiev-

ing better generalization performance in unseen domains.

• The proposed AdapTraj is designed to effectively derive the

domain-invariant features and the domain-specific features

for both the focal and the neighboring agents. These features

encode not only the knowledge shared across domains, but

also the diverse patterns required to handle the variations

present in different domains. Based on these features, we

further devise a new causal formalism to predict future

trajectories.

• We implement the proposed method on two widely used

state-of-the-art methods for multi-agent trajectory prediction

task. Extensive experiments on four real-world datasets

from different domains show that our proposed method
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consistently outperforms baselines by a substantial margin.

II. PRELIMINARIES

In this section, we present the problem formulation for

our problem, detailed observations for our motivation, and

introduce some preliminaries to understand the concepts for

conventional multi-agent trajectory prediction task.

A. Problem Definition

We start with introducing some definitions employed in the

context of multi-agent trajectory prediction and multi-source

domain generalization. Subsequently, we provide a formal

definition of the research problem studied in this paper.

Definition 1. (Trajectory). A trajectory of length |T | is

defined as a sequence of locations XT
i = {(lont

i, lat
t
i)}Tt=1

travelled by an agent, where lont
i and latti denote longitude

and latitude of the i-th agent at timestamp t.

Definition 2. (Multi-Agent Trajectory Prediction).

Given the observed trajectory of a focal agent

Xτ
i = {(lont

i, lat
t
i)}τt=τ+1−|Tobs| in the past |Tobs| steps,

and the trajectories of its neighboring agents N(i, τ) that

co-occur with the focal agent within a specified time interval

Ei = {Xτ
j }N(i,τ)

j=1 , the objective of multi-agent trajectory

prediction can be modeled as learning a predictive function:

Ŷ τ
i = F(Xτ

i , Ei)

where Ŷ τ
i = {( ˆlon

t

i,
ˆlat

t

i)}τ+|Tpred|
t=τ+1 is the predicted future

trajectory of the focal agent in the next |Tpred| steps.

Compared to single-agent prediction, the phrase “multi-

agent trajectory prediction” highlights the analytical process

that accounts for the dynamic interactions among multiple

agents. Such interactions lead to diverse movement behav-

iors, including but not limited to collision avoidance, leader-

follower relationships, and coordination based on social norms.

While additional data such as visual (e.g., environmental

images) or contextual information (e.g., group annotations) are

sometimes available, in line with studies [2], [5], [12], [13] for

broader practical applications, trajectories are used as the only

input for prediction in our study.

Definition 3. (Domain Generalization). The objective of

domain generalization is to learn a robust predictive function

f : X → Y using solely the data from a collection of source

domains DS = {D1
S , D

2
S , . . . , D

K
S } such that the prediction

error on unseen target (test) domain DT is minimized:

min
f

E(x,y)∈DT
[L(f(x),y)]

where E denotes the expectation and L(·, ·) represents the loss

function calculated by the predicted result f(x) and the ground

truth y.

We follow the commonly adopted setting [9], [14]–[16] by

assuming that the target domain can not be accessed during

TABLE II
RESULTS OF EXISTING METHODS WITH DIFFERENT TARGET DOMAIN ON

ADE AND FDE METRICS.

Source Domain LBEBM PECNet Counter CausalMotion
SDD 0.55/0.98 0.59/1.05 1.34/2.93 1.35/2.89

ETH&UCY 0.85/1.80 1.20/1.88 1.48/3.03 1.56/3.28

model training, and the joint distribution P (X,Y ) for each

domain differs from one another:

PT (X,Y ) �= P k
S (X,Y ), ∀k ∈ {1, 2, . . . ,K}

P k
S (X,Y ) �= P k

′

S (X,Y ), 1 ≤ k �= k
′ ≤ K

Note that for multi-agent trajectory prediction task, previous

studies [6], [7] propose to learn f by leveraging training data

from a single source domain (i.e., K = 1), which is referred to

as single-source domain generalization. In contrast, we aim to

expand the number of source domains as multi-source domain

generalization setting, and propose to study how to enhance

the performance by effectively utilizing multiple distinct yet

correlated source domains (i.e., K > 1).

Building upon the above definitions, we provide a formal

definition of the research problem addressed in this paper.

Definition 4. (Multi-Source Domain Generalization for
Multi-Agent Trajectory Prediction). Given trajectory data

from multiple domains DS , we aim to learn a predictive

function F that minimizes the error of multi-agent trajectory

prediction for trajectories from unseen target domain DT :

min
F

E([Xt
i ,Ei],Y t

i )∈DT
[L(F(Xt

i , Ei), Y t
i )]

B. Motivation

We illustrate the issues for domain generalization and neg-

ative transfer from multiple domains discussed in Sec. I.

1) Impact of domain discrepancies on performance decline:
We verify the issue of domain discrepancies with two state-

of-the-art methods, namely LBEBM [12] and PECNet [5]. As

shown in Tab. II, these methods exhibit a significant decline

in performance when they are applied to the test instances

on the SDD dataset, but are trained on instances from a

different domain (ETH&UCY), in comparison to instances

from the same domain (SDD). This motivates us to design

effective methods that can tackle various domains for multi-

agent trajectory prediction.

2) Impact of negative transfer: To quantify the impact of

negative transfer, we evaluate the performance of two single-

source domain generalization methods [6], [7] for multi-agent

trajectory prediction. As indicated in Tab. III, rather than

benefiting from an increased volume of training data, as the

number of source domains increases, we observe a decline

in both ADE/FDE metrics (lower is better, definitions are in

Sec. IV-A) on the unseen domain (SDD). This illustrates the

difficulty of multi-source domain generalization posed by the

phenomenon of negative transfer.
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Fig. 1. An overview of backbone model.

TABLE III
RESULTS OF SINGLE-SOURCE DOMAIN GENERALIZATION METHODS

TRAINED ON VARIED NUMBER OF SOURCE DOMAINS.

Source Domains Counter CausalMotion
ETH&UCY 1.48/3.03 1.56/3.28

ETH&UCY, L-CAS 1.57/3.17 1.85/3.50
ETH&UCY, L-CAS, SYI 1.77/3.68 1.89/3.68

C. Backbone Model for Multi-Agent Trajectory Prediction

As our framework serves as a plug-and-play module ap-

plicable to various multi-agent trajectory prediction methods,

we offer a brief overview of the backbone model, which is

built upon the sequence-to-sequence (seq2seq) architecture,

for conventional multi-agent trajectory prediction task. As

illustrated in Fig. 1, the model consists of three components:

an individual mobility layer, a neighbor interaction layer, and

a future trajectory generator.

1) Individual Mobility Layer: This layer aims to capture

the individual mobility patterns of each agent by utilizing the

historical trajectories of the focal agent Xt
i and its neighboring

agents Ei as input. Initially, a multi-layer perception (MLP) is

employed to encode the location of each agent, resulting in

a fixed-length vector eti. The function MLP (·) represents an

embedding function with ReLU non-linearity. This encoding

process can be expressed as follows:

eti = MLP (Xt
i ) (1)

Subsequently, these embeddings serve as input to the indi-

vidual mobility encoder φ(·), which captures the state of each

agent and extracts its motion pattern. At each iteration l for

each agent, denoted as ht,l
ei , the individual mobility pattern is

acquired through the encoder. This encoder, with the number

of iterations denoted as le, can be implemented using any

sequential models, such as LSTM [2], [17], or more advanced

models like Transformer [18], [19]. The computation of the

encoder can be formulated as:

ht,l
ei = φ(ht,l−1

ei , eti), 1 ≤ l ≤ le (2)

2) Neighbor Interaction Layer: The neighbor interaction

layer combines the mobility pattern of different agents to

effectively model the interactions between the focal agent and

its neighboring agents. We aggregate the hidden states of all

agents present in the scene to generate an interaction tensor

Pi for each agent. The calculation is defined as follows:

Pi = ϕ(ht,le
ei , ht,le

ej , · · · , ht,le
ek ), ∀j, k ∈ N(i, t) (3)

where ϕ(·) denotes a specifically designed encoder, such as

pooling [2], [3], attention [4], [5], and graph mechanism [7],

[13]. ht,le
ei , ht,le

ej , and ht,le
ek denote the individual mobility

pattern of the i-th, j-th, and the k-th agent, respectively, at

the final iteration le. Moreover, the j-th and k-th agents are

neighbors of the i-th agent.

3) Future Trajectory Generator: The purpose of the future

trajectory generator is to generate plausible future trajectories

that align with the observed historical trajectories. To achieve

this, we adopt the seq2seq decoder architecture initialized

by the final hidden state from the encoder to perform the

generation of output trajectories. Specifically, the initialization

steps are defined as follows:

cti = γ(Pi, h
t,le
ei ) (4)

ht,0
di = [cti, z] (5)

where γ(·) represents a decoder initialization, such as MLP,

that combines the final hidden state of individual mobility

and neighbors’ interaction state. Here ht,0
di corresponds to the

initialized decoder state, and z, which refers to the latent

variable serving as input noise, is utilized to generate multiple

diverse yet socially compliant future trajectories. Once the

decoder states are initialized as described above, trajectory

prediction is carried out using the following steps:

ht,l
di = ψ(Pi, h

t,le
ei , ht,l−1

di ), 1 ≤ l ≤ ld (6)

Ŷ t
i = μ(ht,ld

di ) (7)

where ψ(·) represents a designed function that combines

different features and undergoes ld iterations to perform its

operation. μ(·) denotes the designed future trajectory decoder

responsible for generating the future trajectory based on the

combined feature described above. Here ht,l
di corresponds to

the decoder state of each agent at iteration l.
The training objective aims to minimize errors between the

predicted future trajectories and the ground truth trajectories:

Lbase =
∑

Y t
i ∈DS

‖Y t
i − Ŷ t

i ‖22 (8)

III. ADAPTRAJ FRAMEWORK
A. Overview

The proposed AdapTraj framework, designed for multi-

source domain generalization setting in multi-agent trajectory

prediction, functions as a plug-and-play module adaptable to a
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Fig. 2. An overview of AdapTraj. AdapTraj consists of three components: domain-invariant extractor, domain-specific extractor, and domain-specific aggregator.

variety of models. This framework diverges from the oversim-

plified assumptions in prior domain generalization studies [6],

[7], which cannot fully capture the impact of external factors

in this task. Instead, as depicted in Fig. 2, we propose a new

causal formulation for multi-agent trajectory prediction and

explicitly model four types of features: domain-invariant and

domain-specific features for both the focal agent and neigh-

boring agents. This approach is able to effectively harness

the knowledge from multiple domains and thus address the

negative transfer issue for prediction in unseen target domains.

To this end, AdapTraj comprises three main components: a

domain-invariant extractor, a domain-specific extractor, and a

domain-specific aggregator.

To address the issue of inadequate modeling for external fac-

tors, based on our causal formalism, domain-invariant extractor

and domain-specific extractor are employed to effectively

derive the various features mentioned above. Specifically, we

ensure the learned features from domain-invariant extractor

remain invariant despite domain variations by utilizing weight

sharing across various source domains. Furthermore, we en-

sure the learned features from the domain-specific extractor are

specific to each domain by taking advantage of the orthogonal

relationship between invariant and specific features.

To address the issue of negative transfer arising from

multiple source domains, the domain-specific aggregator is

employed to adaptively aggregate the specific knowledge

obtained from all source domains and extract effective domain-

specific features to accommodate trajectories presented by

unseen domains during inference.

Next, we introduce the details of each module, namely

domain-invariant extractor (Sec. III-B), domain-specific

extractor (Sec. III-C), and domain-specific aggregator

(Sec. III-D). We further illustrate the training and inference

procedures (Sec. III-E).

B. Domain-Invariant Extractor

Previous studies, as indicated in [8], [9], [15], [16], suggest

the importance of extracting inherent and domain-invariant

knowledge for effective domain generalization. In this way,

features that remain invariant to the discrepancies across

source domains are more likely to exhibit robustness to any

unseen target domain. Applying this concept to the task of

multi-agent trajectory prediction, the extraction of invariant

features from both the focal agent’s and neighbors’ trajectories

becomes critical as these features function as essential com-

ponents in the predictive model. Building upon this idea, and

drawing inspiration from classical transfer learning work [9],

[14], [20], [21], we propose a shared-weight domain-invariant

extractor module to capture shared features across various

domains.

Specifically, the domain-invariant extractor module consists

of three parts: an individual invariant extractor, a neighbor

invariant extractor, and a domain invariant fusion. The indi-

vidual invariant extractor Vind is designed to extract invariant

features Hi
i from the individual mobility of the focal agent

(e.g., human motion), while the neighbor invariant extractor

Vnei focuses on extracting invariant features Hi
Ei

from the

interactions of its neighbors (e.g., collision avoidance). The

domain invariant fusion Vfuse combines these two invariant

features into a unified invariant variable Hi for the prediction

of future trajectories.

Hi
i = Vind(h

t,le
ei ) (9)

Hi
Ei

= Vind(Pi) (10)

Hi = Vfuse(H
i
i , H

i
Ei
) (11)

To ensure effective extraction of invariant features, our ap-

proach incorporates two loss functions: the reconstruction loss

and the domain adversarial similarity loss. Additionally, we
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introduce two extra decoders, i.e., the reconstruction decoder

Drecon and domain classifier Dclass, to compute these losses.

The reconstruction loss employs the scale-invariant mean

squared error [16], [22] across all source domains. By pe-

nalizing differences between pairs of dimensions, the scale-

invariant mean squared error allows the model to learn to

reproduce the overall shape of the objects being modeled. The

reconstruction loss Lrecon is calculated as follows:

Lrecon =
∑

Xt
i∈DS

Lsimse(X
t
i , X̂

t
i ) (12)

where X̂t
i , the reconstruction of Xt

i , is generated by the

reconstruction decoder Drecon, e.g., MLP, using the invariant

Hi
i and specific Hs

i features associated with Xt
i .

X̂t
i = Drecon(H

i
i , H

s
i ) (13)

The scale-invariant mean squared error is a metric that relates

to the conventional mean squared error but incorporates an

additional term − 1
m2 ‖Xt

i − X̂t
i‖22 to credit mistakes if they

are in the same direction and penalizes them if they oppose.

The computation is as follows:

Lsimse(X
t
i , X̂

t
i ) =

1

m
‖Xt

i − X̂t
i‖22 −

1

m2
‖Xt

i − X̂t
i‖22 (14)

where m represents the number of dimensions in input Xt
i ;

and ‖ · ‖22 denotes the squared L2 norm.

The domain adversarial similarity loss aims to minimize

the negative log-likelihood of the ground truth domain label

for each sample from source domains. This encourages the

model to generate representations in such a way that a domain

classifier Dclass reliably predicts the domain of the encoded

representation. The domain adversarial similarity loss Lsimilar

is calculated as follows:

Lsimilar =
∑

Xt
i∈DS

−dilog(d̂i) (15)

where di represents the one-hot encoding of the domain label

for source input Xt
i and d̂i is the softmax prediction of the

domain label, generated by the domain classifier Dclass.

d̂i = Dclass(H
i
i , H

i
Ei
, Hs

i , H
s
Ei
) (16)

C. Domain-Specific Extractor

To address the issue of inadequate modeling for external

factors, we propose a new causal formulation compared to

the oversimplified assumption in prior domain generalization

studies. Apart from domain invariant features, in the context

of multi-source domain generalization, the incorporation of

domain-specific features significantly contributes to enhancing

the performance and adaptability of models across different

source domains [8], [10], [20]. While domain-invariant fea-

tures capture the shared underlying patterns and knowledge

among various domains, domain-specific features account for

the unique characteristics specific to individual domains. Con-

sequently, the extraction of specific features from both the

trajectory of the focal agent and the trajectories of its neighbors

becomes of paramount importance.

There exists an orthogonality constraint between domain-

specific and domain-invariant features [9], [15], [16]. Building

upon this constraint and drawing inspiration from the con-

cept of mixture-of-experts [8], [10], [20], [23], we propose

the domain-specific extractor to encourage a clear separation

between the features related to specific source domains and

the features shared across domains.

The domain-specific extractor consists of three parts: an

individual specific extractor, a neighbor specific extractor, and

a domain specific fusion. The individual specific extractor

Mind is designed to extract specific features Hs
i from the indi-

vidual’s mobility, while the neighbor specific extractor Mnei

focuses on extracting specific features Hs
Ei

from the neighbors’

interaction. The domain specific fusion Mfuse combines these

two specific features into a unified specific variable Hs which

is used for the prediction of future trajectories.

Specifically, we define Mind = {Mk
ind}|DS |

k=1 and Mnei =

{Mk
nei}|DS |

k=1 to represent the individual specific extractor

and neighbor specific extractor, respectively. In contrast to

the domain-invariant extractor module that shares the same

weights across source domains, each Mk
ind or Mk

nei is trained

separately on the source domain Dk
S to learn its specific

features related to the individual or neighbors as follow:

Hs
i = Mk

ind(h
t,le
ei ), 1 ≤ k ≤ |DS | (17)

Hs
Ei

= Mk
nei(Pi), 1 ≤ k ≤ |DS | (18)

Hs = Mfuse(H
s
i , H

s
Ei
) (19)

To ensure that only domain-specific knowledge is encoded,

our method integrates the difference loss Ldiff via a soft

subspace orthogonality constraint between specific Hs
i and

invariant Hi
i representations of each domain.

Ldiff =
∑

Xt
i∈DS

‖Hi
i

T
Hs

i ‖2F + ‖Hi
Ei

T
Hs

Ei
‖2F (20)

where ‖ · ‖2F denotes the squared Frobenius norm.

In addition to the difference loss Ldiff , we employ Lrecon

and Lsimilar as mentioned in the domain-invariant extractor

module to enhance effectiveness of extracted specific features.

D. Domain-Specific Aggregator

To tackle the issue of negative transfer arising from multiple

source domains and to enhance the model’s adaptability in

the unseen target domain, the domain-specific aggregator is

designed. In the context of multi-source domain generalization

setting, where the target domain cannot be accessed during

both training and evaluation stages, we simulate the test-time

distribution shift by excluding the corresponding expert model

in each iteration. This simulation is achieved by masking

out the domain label (Dk
S → D?

S in Fig. 2). Consequently,

the domain-specific aggregator is compelled to adapt using

the aggregated domain-specific knowledge obtained from the

accessible source domains, leading to improved generalization

performance in the unseen target domain.

Specifically, the domain-specific aggregator consists of two

parts: an individual specific aggregator, and a neighbor specific
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aggregator. In the individual specific aggregator Aind(·), we

treat Mind as the teacher and adapt knowledge from the

source domains, enabling better generalization to the unseen

domain. During training, a batch of masked domain trajec-

tories from the source domain Xt
i ∈ D?

S is randomly sam-

pled, and their domain-specific knowledge {Mk
ind(X

t
i )}|DS |

k=1

is queried. This knowledge is then processed by the individ-

ual specific aggregator to capture the interconnection among

aggregated domain knowledge:

Hs
i = Aind(

|DS |∑

k=1

Mk
ind(X

t
i )) (21)

The aggregator Aind(·) explores and combines the knowledge

from multiple source domains to obtain the aggregated feature

in the unseen target domain.

The neighbor specific aggregator Anei(·) mirrors the design

of the individual specific aggregator, with the distinction that

we treat Mnei as the teacher.

Hs
Ei

= Anei(

|DS |∑

k=1

Mk
nei(X

t
i )) (22)

As the effectiveness of the domain-specific aggregator relies

on the domain-specific extractor, it is essential to ensure

sufficient training of the domain-specific extractor before pro-

ceeding with the training of the domain-specific aggregator.

During the domain-specific aggregator’s training, the layers

associated with the domain-specific extractor should be frozen.

E. Training and Inference Procedures

1) Training Procedure: By integrating the domain-invariant

extractor, domain-specific extractor, and domain-specific ag-

gregator components together, our method’s training procedure

is outlined in Alg. 1. The training process consists of three

steps, with a total of etotal training epochs.

In the first step (Lines 3-5), we jointly train the backbone

model, domain-invariant extractor, and domain-specific extrac-

tor with an initialized learning rate lr. The loss function,

denoted as Ltotal, used in this step is shown as follows:

Ltotal = Lbase + δLours (23)

where Ltotal is a combination of Lbase in the backbone model

(Eq.(8)) and our proposed loss function Lours (Eq. (24)). The

domain weight δ is introduced to adjust the relative weight

between Lbase and Lours, and the computation of Lours is

shown as follows:

Lours = α ∗ Lrecon + β ∗ Ldiff + γ ∗ Lsimilar (24)

where Lrecon, Ldiff and Lsimilar represent the reconstruction

loss (Eq. (12)), the difference loss (Eq. (20)), and the domain

adversarial similarity loss (Eq.(15)), α, β, and γ are hyperpa-

rameters introduced to adjust relative weights between them.

At the end of this step, the backbone model, domain-invariant

extractor, and domain-specific extractor are well-trained.

In the second step (Lines 7-17), we train the domain-specific

aggregator until eend epoch. During this step, the learning rate

Algorithm 1: Training Procedure

Input: source domains DS = {D1
S , D

2
S , · · · , DK

S } and

hyperparameters {δ, estart, eend, σ, flow, fhigh}
1 initialize model parameters and learning rate lr;

2 // Step 1: train backbone model, domain-invariant
extractor, and domain-specific extractor;

3 for e = 0 to estart do
4 update parameters by optimizing Eq.(23);

5 end
6 // Step 2: train domain-specific aggregator;

7 for e = estart to eend do
8 for k = 1 to K do
9 // masked domain trajectory data;

10 if random() < σ then
11 Dk

S → D?
S ;

12 end
13 train domain-specific aggregator with learning

rate lr × fhigh;

14 train other modules with learning rate lr× flow;

15 update parameters by optimizing Eq.(25);

16 end
17 end
18 // Step 3: train the entire method;

19 for e = eend to etotal do
20 for k = 1 to K do
21 // masked domain trajectory data ;

22 if random() < σ then
23 Dk

S → D?
S ;

24 end
25 train the entire method with learning rate

lr × flow;

26 update parameters by optimizing Eq.(25);

27 end
28 end

of the domain-specific aggregator is set relatively high (Line

13), while the learning rate of other modules is set relatively

low (Line 14). To control the learning rate, we introduce

hyperparameters flow and fhigh, representing the relatively

low and high fractions compared to the initial learning rate in

the first step. The loss function utilized in the second step is

similar to that of the first step, differing only in the setting of

a small value for δ
′
.

Ltotal = Lbase + δ
′
Lours (25)

Additionally, we introduce a probability parameter σ, referred

to as the aggregator ratio, to determine the likelihood of

masking out the domain label (Lines 10-12). This is to adopt

a teacher-student learning process, where the domain-specific

aggregator is trained to perform similarly in the situation when

the domain label is unavailable. At the end of this step, the

domain-specific aggregator is well-trained.

Finally, in the third step (Lines 19-28), we train the

entire modules in the framework, including the backbone

model, domain-invariant extractor, domain-specific extractor,

and domain-specific aggregator, with a low learning rate (Line
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25). Similar to the second step, we adopt a teacher-student

learning process by introducing the likelihood ratio parameter

σ. After this step, we obtain a well-trained multi-agent tra-

jectory prediction model that operates effectively under the

multi-source domain generalization setting.

2) Inference Procedure: During the inference stage, the

model receives trajectories from the unknown target domain,

following the procedure depicted in Step 3 of Fig. 2. Each tra-

jectory is initially processed by the selected backbone model.

The outputs, ht,le
ei and Pi, from the backbone model, are then

fed into the domain-invariant extractor, generating domain-

invariant fused features Hi. Simultaneously, these outputs also

pass through individual specific extractor {Mk
ind}|DS |

k=1 and

neighbor specific extractor {Mk
nei}|DS |

k=1 successively. They

subsequently proceed to individual specific aggregator Aind

and neighbor specific aggregator Anei before reaching the

domain specific fusion module Mfuse, which produces target

domain-specific fused features Hs. Finally, the future trajec-

tory Ŷ t
i is generated by combining its historical information

ht
ei and neighbor interactions Pi, along with the two types

of features encoding knowledge about the invariant Hi and

diverse patterns Hs across domains.

IV. EXPERIMENTS

To evaluate the performance of AdapTraj, we conduct exten-

sive experiments to answer the following research questions.

• RQ1: Can our framework outperform the current state-of-

the-art multi-agent trajectory prediction models under the

multi-source domain generalization setting? (Sec. IV-B)

• RQ2: How does our framework perform in terms of model

analysis? (Sec. IV-C)

• RQ3: How does each component of our method contribute

to the performance? (Sec. IV-D)

• RQ4: How efficient is our method in terms of inference

time? (Sec. IV-E)

• RQ5: How do the hyperparameters impact the performance

of our framework? (Sec. IV-F)

A. Experimental Setup

1) Datasets: For this research, we carefully selected the

public and the most representative datasets that are considered

benchmarks in the topic of multi-agent trajectory prediction.

We then utilized the datasets that contain sufficient instances

and exhibit diverse trajectory characteristics/distributions to

verify claim in the paper. We have endeavored to overcome

limitations posed by resource availability, while showcasing

applicability of our method across multiple datasets and do-

mains. To the best of our knowledge, our research utilizes

the most extensive and diverse datasets within this field of

study. Finally, we conduct experiments on four real-world

multi-agent interaction datasets that have been widely used

in previous studies on multi-agent trajectory prediction [5],

[13], [24]. Statistics of datasets are presented in Tab. I, and we

provide comprehensive descriptions of these datasets below:

• ETH&UCY [25], [26]: it serves as the primary benchmark

for evaluating multi-agent trajectory prediction methods that

contain interactions like leader-follower dynamics, collision

avoidance, and group formations and dispersals.

• L-CAS [27]: it offers valuable insights into diverse social in-

teractions within indoor environments, including interactions

among human groups, running children, and individuals

with trolleys.

• SYI [28]: it is a new large-scale dataset that features

significantly longer trajectories compared to other datasets

and provides long-term traffic flow changes and complex
crowd behaviors.

• Stanford Drone Dataset (SDD) [29]:it is a large-scale

benchmark that records trajectories in the university campus.

Apart from being extracted from various domains, the

trajectories in these datasets are also recorded in different

spaces and at varying time intervals. For instance, the L-CAS

dataset records trajectories in world space using meters as

the unit of measurement and has an interval of 0.4 seconds.

In contrast, the SDD dataset captures trajectories in image

pixel space with a faster interval of 1/30 seconds. To ensure

a fair comparison, we follow the same data preprocessing

and data splitting procedures as TrajNet++ [24] for all the

datasets. Specifically, we convert the trajectories to real-world

coordinates and interpolate the values to obtain measurements

every 0.4 seconds. Each dataset is split chronologically into

train, validation, and test sets with a ratio of 6:2:2.

For all the experiments, we select trajectories from the SDD

dataset as the target domain, while utilizing trajectories from

the ETH&UCY, L-CAS, and SYI datasets as source domains.

2) Compared Methods: Recall that AdapTraj can serve as

a plug-and-play module for existing models for multi-agent

trajectory prediction, we employ two state-of-the-art methods

as our backbone prediction models:

• PECNet [5]: it incorporates the inferred distant trajectory

endpoints and a non-local social layer to generate diverse

yet socially compliant future trajectories.

• LBEBM [12]: it incorporates a latent-based approach that

effectively models the movement history and social context,

which are crucial factors in accurately predicting multi-

agent trajectories. By employing a latent space and defining

a cost function, LBEBM captures the underlying patterns

and relationships in the data, allowing for more accurate

trajectory predictions.

Given that we tackle the pioneering exploration of the multi-

source domain generalization setting, we proceed with the

comparison to existing single-source domain generalization

models specifically designed for multi-agent trajectory pre-

diction. Specifically, all the training datasets are collectively

treated as a single source domain to facilitate the adaptation

to these models.

• Counter [6]: it utilizes counterfactual analysis to explore

the causality between predicted trajectories and input clues,

and alleviate the negative effects brought by the environment

bias, i.e., remove the dependence of external factors.

• CausalMotion [7]: it employs an invariance loss to identify

and suppress spurious correlations by capturing subtle dis-
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tinctions. The method is designed to leverage only a single

source domain, thus not capable of uncovering the invariant

features shared by external factors that are common across

multiple domains.

3) Evaluation Metrics: We employ two widely used evalu-

ation metrics, namely Average Displacement Error (ADE) and

Final Displacement Error (FDE), to evaluate the performance

of trajectory prediction methods. Lower values of these metrics

indicate superior performance:

• ADE measures the average Euclidean distance between the

predicted locations and the corresponding ground truth loca-

tions at each time step. It quantifies the deviation between

the predicted trajectory and the ground truth trajectory in

terms of their overall tendencies.

ADE =

τ+|Tpred|∑

t=τ+1

N(i,t)∑

i=1

1

N(i, t)× |Tpred| ‖Ŷ
t
i − Y t

i ‖2

• FDE measures the Euclidean distance between the predicted

final location and the ground truth final location at the final

time step. It quantifies the deviation between the predicted

trajectory’s destination and the ground truth destination. To

make the formula clear, we denote the final time step as

tfinal = τ + |Tpred|.

FDE =

N(i,tfinal)∑

i=1

1

N(i, tfinal)
‖Ŷ tfinal

i − Y
tfinal

i ‖2

4) Implementation Details: Following the common setting

with previous studies [5], [6], [12], [13], for each given

trajectory, we perform prediction for the subsequent 12 time

steps (equivalent to 4.8 seconds) using observed trajectories

in the previous 8 time steps (equivalent to 3.2 seconds). We

set the number of epochs to 300, the batch size to 32, and

the value of hyperparameters α, β, and γ in Eq.(24) to 0.01,

0.075, and 0.25 for all experiments.

B. Performance Comparison (RQ1)
Tab. IV presents the results of all the compared methods for

multi-agent trajectory prediction task under the multi-source

domain generalization setting. In the experiments, Each dataset

is utilized as the target domain while the other three are treated

as the source domains. Specifically, we compare four baseline

methods on two backbone models, namely PECNet [5] and

LBEBM [12] mentioned previously. These methods include

vanilla, Counter, CausalMotion, and AdapTraj, where vanilla

denotes the original implementation of the backbone model.

We make several observations from the results.

First, LBEBM-vanilla performs better than PECNet-vanilla

because it considers the movement history and social context,

which are important for accurate multi-agent trajectory pre-

diction. These findings are consistent with predictions under

the setting where training and test trajectories are drawn from

the same dataset.

Second, PECNet-Counter performs worse than PECNet-

vanilla due to its counterfactual framework. This framework

Fig. 3. Performance of AdapTraj on Various Numbers of Source Domains.

removes the counterfactual component capturing environmen-

tal interactions during prediction, leading to the loss of crucial

information and hindering performance, especially in multi-

source domain generalization. Similar patterns can be observed

between LBEBM-Counter and LBEBM-vanilla.

Third, PECNet-CausalMotion performs worse than

PECNet-vanilla because the causal formalism used in

CausalMotion fails to address negative transfer(demonstrated

in Tab. III), particularly in the presence of multiple source

domains. The causal formalism only leverages a single source

domain and cannot uncover invariant features shared across

multiple domains. This issue becomes more pronounced as

the number of source domains increases, resulting in poorer

performance compared to directly deploying the original

model on the target domain.

Lastly, AdapTraj outperforms all baseline methods. While

the absolute value of improvement may be modest, such

magnitude is still considered noteworthy contributions in

the context of multi-agent trajectory prediction research, as

demonstrated by previous studies, including but not limited to

EvolveGraph [13], LBEBM [12], and PECNet [5]. Moreover,

the experiments across domains indicate that our method

yields more substantial improvements in certain scenarios

(e.g., SYI), while maintaining consistent superiority across all

the domains. These findings further highlight the contributions

of our method. Building upon a new causal formulation for

trajectory prediction to explicitly model four types of features:

domain-invariant and domain-specific features for both the

focal agent and neighboring agents. This approach is able

to effectively leverage the knowledge from multiple domains

and thus address the negative transfer issue for prediction in

unseen target domains. The superior performance of AdapTraj

is consistent across different base models, indicating its effec-

tiveness in multi-source domain generalization for the multi-

agent trajectory prediction task.

C. Model Analysis (RQ2)

Unlike utilizing a single source domain, the main motivation

for incorporating multiple source domains is the expectation

that an increased number of source domains can boost perfor-

mance. However, as presented by the experiments in Tab. III,

this cannot be easily achieved without specific modifications.

To illustrate the effectiveness of our proposed framework,

we examine the performance with two backbone models on

different numbers of source domains. The results are presented

5056

Authorized licensed use limited to: ShanghaiTech University. Downloaded on November 23,2024 at 00:43:56 UTC from IEEE Xplore.  Restrictions apply. 



TABLE IV
PERFORMANCE COMPARISON OF DIFFERENT METHODS UNDER THE MULTI-SOURCE DOMAIN GENERALIZATION SETTING, WITH EACH DATASET SERVING

AS THE TARGET DOMAIN AND THE OTHER THREE DATASETS AS THE MULTI-SOURCE DOMAIN.

Backbone model Learning method
SDD ETH&UCY L-CAS SYI Average

ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE

PECNet

vanilla 0.948 1.785 0.426 0.617 0.282 0.383 1.113 1.983 0.692 1.192
Counter 1.245 1.806 0.547 0.583 0.419 0.346 2.367 4.800 1.144 1.884

CausalMotion 2.394 1.847 1.578 0.613 0.702 0.378 6.138 2.070 2.703 1.227
AdapTraj 0.911 1.670 0.425 0.572 0.256 0.336 1.067 1.883 0.665 1.115

LBEBM

vanilla 0.829 1.721 0.340 0.665 0.288 0.519 1.319 2.663 0.694 1.392
Counter 1.387 2.956 0.617 1.261 0.485 0.946 2.464 5.182 1.238 2.586

CausalMotion 2.639 4.544 1.800 3.043 0.810 1.414 6.691 9.643 2.985 4.661
AdapTraj 0.814 1.648 0.278 0.527 0.237 0.410 1.026 1.909 0.589 1.124

in Fig. 3. Overall, LBEBM-AdapTraj consistently outperforms

PECNet-AdapTraj across all scenarios, which can be attributed

to the enhanced ability of vanilla LBEBM in modeling the

movement history and social context, which are crucial factors

in accurately predicting multi-agent trajectories. Moreover,

we observe that facilitated by the proposed framework, the

performance improves as the number of source domains

increases, which illustrates the successful mitigation of the

negative transfer issue.
To further compare our method and other baseline methods,

we vary the dataset of single-source domain and evaluate them

on the SDD dataset. The results are presented in Tab. V. It can

be observed that the performance of PECNet-Counter is even

worse than that of the vanilla PECNet, as the counterfactual

learning method disregards the influence of environments.

In contrast, PECNet-AdapTraj achieves the best performance

even under the single-source distribution shift setting. The ex-

perimental results indicate that our method is not only effective

for multi-source scenarios, but also proves its superiority in

single-source domain generalization contexts.

Furthermore, we demonstrate the advantages of our learning

method in various settings, as depicted in Tab. VI. PECNet-

AdapTraj slightly outperforms the vanilla PECNet even under

the independent and identically distributed setting, where

both training and testing are performed on the SDD dataset.

However, as the distribution shift setting is considered and

the number of source domains increases, the advantage of our

method becomes more evident.

D. Ablation Study (RQ3)

We perform an ablation study to analyze the impact of

different components in our method under the multi-source

domain generalization setting. Specifically, we examined the

following variants:

• w/o specific: it removes domain-specific features from our

method.

• w/o invariant: it removes domain-invariant features from

our method.

• ours: a complete version of our framework, including both

invariant and specific features.

The results, as presented in Tab. VII, demonstrate that our

framework consistently outperforms all the variants across

both the PECNet and LBEBM backbone models. This indi-

cates that the removal of any component from our framework

negatively affects the overall performance. Furthermore, the

contributions of these components are consistent in the two

backbone models. Moreover, we make several observations

from the difference between variants and vanilla models.
First, the observed increase in FDE for ‘w/o specific’ model

variant compared to the vanilla model could be attributed to

the difficulty of extracting effective features while neglecting

domain-specific features. Previous experiments suggest that

enhancing generalization performance depends on the decou-

pling of domain-invariant and specific features. With different

backbone models, removing either module of capturing re-

spective features in our method would potentially lead to sub-

optimal performance in certain metrics. Specifically, for FDE

in PECNet, when domain-specific features are not explicitly

captured, higher emphasis placed on learning domain-invariant

features can have more negative effect on the model, thus

producing even worse performance than the vanilla method.
Second, the different increase in ADE for the model variants

compared to the vanilla model could be attributed to the

inherent model design of PECNet. PECNet does not ade-

quately employ strict constraints on the extraction of invariant

features across domains. This could lead to the unexpected

incorporation of noise from domain-specific patterns into the

invariant features. Compared to original PECNet, our ap-

proach further includes an explicit module that captures either

domain-invariant or domain-specific features. The empirical

results indicate that the module designed to extract domain-

specific features (w/o invariant) is better at removing the

noise of the invariant features obtained in PECNet than the

module dedicated to extract domain-invariant features (w/o

specific). Therefore, ‘w/o invariant’ model variant contributes

more significantly to the performance on ADE metric.

E. Model Efficiency (RQ4)
We further evaluate the efficiency of different baselines in

terms of average inference time for trajectories from the target

domain. The experiments are conducted on both PECNet and

LBEBM models, and the results are shown in Tab. VIII.
The comparison of inference times among the models

reveals several insights. LBEBM model exhibits a longer

inference time compared to PECNet, primarily due to the

higher complexity of the latent-based module. Additionally,

LBEBM-Counter requires slightly more time compared to the

LBEBM-vanilla because of the additional subtraction step in

counterfactual prediction. On the other hand, PECNet-Counter

shows a comparable inference time to the PECNet-vanilla,

indicating that the inference time is primarily influenced by
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TABLE V
PERFORMANCE COMPARISON OF DIFFERENT METHODS UNDER THE SINGLE-SOURCE DOMAIN GENERALIZATION SETTING, WITH EACH DATASET

SERVING AS THE SINGLE-SOURCE DOMAIN AND EVALUATED ON THE SDD DATASET.

Backbone model Learning method
ETH&UCY L-CAS SYI Average

ADE FDE ADE FDE ADE FDE ADE FDE

PECNet

vanilla 1.203 1.877 1.901 2.468 1.343 2.093 1.482 2.146
Counter 1.223 1.878 1.557 2.476 1.354 2.329 1.378 2.228

CausalMotion 2.408 1.895 2.475 2.494 2.443 2.068 2.442 2.152
AdapTraj 1.121 1.743 1.573 2.381 1.307 2.099 1.334 2.074

LBEBM

vanilla 0.852 1.798 1.689 3.200 1.087 2.193 1.209 2.397
Counter 1.265 2.728 2.012 3.786 1.379 2.965 1.552 3.160

CausalMotion 2.653 4.747 2.629 4.320 2.583 3.745 2.622 4.271
AdapTraj 0.849 1.763 1.483 2.898 1.056 2.120 1.129 2.260

TABLE VI
PERFORMANCE ON VARIOUS NUMBERS OF SOURCE DOMAINS.

Method Source Domains ADE FDE

PECNet
SDD 0.592 1.051

ETH&UCY 1.203 1.877
ETH&UCY, L-CAS 1.240 1.956

PECNet-AdapTraj
SDD 0.585 1.052

ETH&UCY 1.121 1.743
ETH&UCY, L-CAS 1.072 1.729

TABLE VII
ABLATION STUDY WITH TARGET DOMAIN SDD AND SOURCE DOMAINS

ETH&UCY, L-CAS, AND SYI

Backbone model Variant ADE FDE

PECNet

w/o specific 0.942 1.799
w/o invariant 0.927 1.671

ours 0.911 1.670

LBEBM

w/o specific 0.842 1.728
w/o invariant 0.850 1.773

ours 0.814 1.648

the backbone model. Moreover, the CausalMotion learning

method demonstrates almost identical inference time to the

vanilla method, as it maintains the same model architecture

and inference process. Compared to the baseline learning

methods, our proposed framework exhibits a slightly longer

inference time. This is attributed to the utilization of both

invariant and specific features, which enhances the flexibility

and adaptability of the backbone model. However, it is im-

portant to emphasize that the inference time for all compared

methods remains within the same order of magnitude (3-31

milliseconds). Thus, the slight differences in inference time

have a negligible impact on the real-time operation of the

backbone models. Such a difference is unlikely to have great

impact on the user experience when considering the real-time

model deployment for this specific task.

F. Parameter Sensitivity (RQ5)

Considering that the number of hyperparameters is relatively

large, we conduct a sensitivity analysis on the hyperparameters

outlined in Alg. 1. We employ the same experimental setting

mentioned in the paper, and the experimental results are

presented in Fig. 4.
TABLE VIII

INFERENCE TIME(SECONDS) WITH TARGET DOMAIN SDD AND SOURCE

DOMAINS ETH&UCY, L-CAS, AND SYI
Backbone model Learning method Average inference time

PECNet

vanilla 0.003
Counter 0.004

CausalMotion 0.003
AdapTraj 0.007

LBEBM

vanilla 0.027
Counter 0.031

CausalMotion 0.027
AdapTraj 0.030

(a) domain weight δ (b) aggregator start epochs estart

(c) aggregator end epochs eend (d) aggregator ratio σ

(e) low lr fraction flow (f) high lr fraction fhigh
Fig. 4. Parameter Sensitivity Analysis.

1) Domain Weight δ: Fig. 4(a) indicates that moderate

values of the domain weight yield the highest performance

in most cases. Extremely small domain weights hinder the

mitigation of negative transfer, while excessively large domain

weights impair the performance of the future trajectory gen-

erator in the backbone model.
2) Aggregator Start Epochs estart: Fig. 4(b) shows that a

higher aggregator start epoch improves final results. Delaying

the training of the domain-specific aggregator module allows

the well-trained domain-specific extractor modules to enhance

its effectiveness during the unseen phase. However, once the

domain-specific extractor module is adequately trained, further

delay in starting the training of the aggregator module does

not significantly affect the final results.
3) Aggregator End Epochs eend: Fig. 4(c) reveals a no-

ticeable trend where a larger aggregator end epoch results

in improved performance. However, once the domain-specific

aggregator module has been sufficiently trained, prolonging its

training does not yield significant changes in the final results.
4) Aggregator Ratio σ: Fig. 4(d) indicates that a larger ag-

gregator ratio leads to better final results. A higher aggregator
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ratio above 0.5 leads to flat or deteriorating final results, as it

hinders the training of the future trajectory generator module

and negatively affects performance.

5) Low Lr Fraction flow: Fig. 4(e) demonstrates a clear

trend where too smaller or too larger low learning rate fraction,

which hampers the regulation of the relationship between the

domain-specific aggregator module and the other modules,

results in poorer final results.

6) High Lr Fraction fhigh: Fig. 4(f) shows that a larger

high learning rate fraction leads to better final results, as it

enables the full training of the domain-specific aggregator

module. This module becomes more effective in the unseen

phase, improving performance.

V. RELATED WORK

In this section, we first discuss existing studies on multi-

agent trajectory prediction, then we present relevant work that

tackles domain generalization.

A. Multi-Agent Trajectory Prediction
Multi-agent trajectory prediction problem has been widely

studied in the literature, and existing studies can be roughly

grouped as a combination of modeling individual mobility and

interactions among agents.

For modeling individual mobility, various models for han-

dling sequential data are employed as backbones to capture

spatial correlations and temporal dynamics in human trajectory

[19], [30]. For example, PredRNN [17] expands upon the

inner-layer transition function of memory states in RNNs by

introducing a spatial-temporal memory flow. This approach

enables the joint modeling of spatial correlations and temporal

dynamics at various levels within RNN. Due to the more

effective performance achieved by Transformer Network and

Bidirectional Transformer (BERT) across different applica-

tions, they have been also adopted to replace RNN in the

multi-agent trajectory prediction task [18], [19].

Interactions between agents are rather complicated since

agents are governed by physical laws and social norms, such

as yielding right-of-way and keeping certain social distances

[5], [11]–[13]. To consider these factors in human inter-

actions, early studies [11] model the interactions by hand-

crafted features, such as several force terms. However, these

manually designed features cannot truly reflect real-world

human motion, leading to limited model performance. In this

case, data-driven methods have been proposed to learn the

interactions by social pooling techniques. Current works use

attention or graph structure to grasp complicated interactions,

e.g., collective influence among agents. For instance, STGAT

[4] proposes a spatial-temporal attention network to assign

different and adaptive weights to neighboring agents based

on their relevance and attend to the most relevant agents

to capture the collective behavior. Additionally, EvolveGraph

[13] proposes dynamic relational reasoning and adaptively

evolving interaction graphs to account for the dynamic nature

of interactions.

Despite prominent results achieved by these studies, they all

employ classical setting of splitting data instances within one

scene for training and testing stages. In contrast, our method

addresses challenges of multi-agent trajectory prediction under

multi-source domain generalization setting, which can serve as

a solution for more use cases and scenarios in practice.

B. Domain Genralization
Domain generalization [9], [15] aims to train a model

that can achieve satisfactory performance on unseen target

domains without accessing any prior information from them.

This problem has typically been studied under two different

settings, namely single-source domain generalization [16],

[21] and multi-source domain generalization [14], [20].
In single-source domain generalization, it is assumed that

data instances from only one source domain are available. This

means that the model is required to comprehend the inherent

knowledge of the task and the diversity of examples from a

single domain, which is promising yet quite challenging [8]–

[10]. On the other hand, multi-source domain generalization

reduces the difficulty in the previous setting by leveraging

multiple source domains. To achieve this, numerous methods

have been proposed with different design motivations, in-

cluding data augmentation [31], [32], feature disentanglement

[33]–[35], domain-invariant representation learning [36], etc.

Among them, mixture-of-experts (MoE) [10] is a promising

approach to improve the generalization performance. The idea

of MoE is to decompose the whole training set into many

subsets to be independently learned by different models. Then

methods are developed to leverage the collective knowledge

obtained by each expert. They either apply sparse selection

methods [37]–[39] to select a small number of experts during

the inference stage or design full aggregation methods [8],

[20], [23] to extract and combine the knowledge from all

the experts to increase the expressive power of independent

models. Drawing on the motivation of mixture-of-experts, we

propose a novel aggregation module by utilizing a causal

formalism in our model.

VI. CONCLUSION

In this work, we identify the limitations through quanti-

tative experiments on how to obtain a generalizable model

that is effective at tackling unseen examples in multi-agent

trajectory prediction task. Furthermore, we propose a multi-

source domain generalization framework tailored for multi-

agent trajectory prediction named AdapTraj, which is adapt-

able to a variety of models with domain-invariant extractor,

domain-specific extractor, and domain-specific aggregator to

effectively leverage the knowledge from multiple domains and

thus address the negative transfer issue in trajectory prediction

for unseen target domains. Through extensive experiments

using different domains based on four real-world datasets,

we demonstrate that our proposed framework consistently

outperforms other baselines by a substantial margin.
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