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ABSTRACT
Knowledge graph embedding (KGE) aims to project both entities

and relations in a knowledge graph (KG) into low-dimensional

vectors. Indeed, existing KGs suffer from the data imbalance issue,

i.e., entities and relations conform to a long-tail distribution, only

a small portion of entities and relations occur frequently, while

the vast majority of entities and relations only have a few train-

ing samples. Existing KGE methods assign equal weights to each

entity and relation during the training process. Under this setting,

long-tail entities and relations are not fully trained during training,

leading to unreliable representations. In this paper, we propose

WeightE, which attends differentially to different entities and re-

lations. Specifically, WeightE is able to endow lower weights to

frequent entities and relations, and higher weights to infrequent

ones. In such manner, WeightE is capable of increasing the weights

of long-tail entities and relations, and learning better representa-

tions for them. In particular, WeightE tailors bilevel optimization

for the KGE task, where the inner level aims to learn reliable entity

and relation embeddings, and the outer level attempts to assign

appropriate weights for each entity and relation. Moreover, it is

worth noting that our technique of applying weights to different

entities and relations is general and flexible, which can be applied

to a number of existing KGE models. Finally, we extensively val-

idate the superiority of WeightE against various state-of-the-art

baselines.
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1 INTRODUCTION
Knowledge Graphs (KGs), such as Freebase [2], Yago [36] and Wiki-

data [41] have been pivotal resources for a number of AI-related

applications, including recommender systems [15, 58], information

retrieval [35, 50], question answering [17, 27], time series forecast-

ing [10], and drug discovery [48]. Indeed, KGs are multi-relational

directed graphs composed of entities as nodes and relations as dif-

ferent types of edges. The information of real-world entities and

relations is modeled in the form of knowledge triples, which are

denoted as (𝑠, 𝑟, 𝑜), where 𝑠 and 𝑜 are two entities, corresponding

to the subject and object of the triple, and 𝑟 denotes the relation

between them, e.g., (London, capital_of, UK).
Although knowledge triples represent real-world facts in an

easy-to-understand manner, their symbolic nature makes it hard

for them to be used by machine learning, especially deep learn-

ing algorithms [56]. Under the circumstances, knowledge graph

embedding (KGE) methods quickly attracted massive attention.

KGE aims to project both entities and relations into a continuous

low-dimensional space, so as to simplify the manipulation while

preserving the inherent structure of the KG. Such embeddings en-

code rich information of entities and relations, and can be widely

utilized in neural network based models for knowledge completion,

fusion and inference [44, 54].

However, existing KGs suffer from the data imbalance problem.

Figure 1 shows the frequencies of entities and relations in the real-

world KG Wikidata [41], where the vertical axis represents the

frequency, and the horizontal axis denotes entity and relation IDs

sorted by the corresponding frequencies. We find entities and rela-

tions conform to a long-tail distribution, i.e., only a small number

of entities and relations occur frequently, while the vast majority

of entities and relations are only associated with limited triples. For

better visualization, we only show top 1000 frequent entities and

top 200 frequent relations. Note that there are more than 9 × 10
7

entities and more than 1000 relations in Wikidata. Thus the real
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(b) Relation Frequency

Figure 1: Entity and relation frequency in the real-world
knowledge graph Wikidata.

situation is much more severe than the figure shows. Nevertheless,

most existing methods ignore the data imbalance issue, resulting

in unreliable representations for long-tail entities and relations
1
.

For preliminary experiments, we run the widely used KGE model

TransE [3] on the benchmark dataset FB15k-237 [38]. We find for

test triples with the frequent entity United Kingdom which has

1953 occurrences, TransE achieves the mean reciprocal rank (MRR)

score of 0.408 on the link prediction task. While for test triples

with the infrequent entity Pisa which only occurs 8 times, TransE

obtains a much lower MRR score of 0.194, which is in line with our

conjecture. Thus it is critical to learn more reliable representations

for infrequent entities and relations, which is beneficial for KGE

models to achieve better performance in downstream tasks.

To this end, in this paper, we aim to learn better representations

for long-tail entities and relations during the training process. In

the current KGE setting, existing models do not differentiate the

weights of different entities and relations, and thus tend to pay

more attention to the frequent ones due to their high frequency.

Current approaches that tackle the data imbalance issue focus on

the few-shot link prediction (a.k.a. KG completion) task, in which

the researchers apply the few-shot setting to predict missing values

1
In this paper, long-tail entities/relations indicate entities/relations with low

frequencies.

in KG. Under this setting, each few-shot learning task corresponds

to an infrequent relation that only occurs a few times (e.g., 5-shot).

However, existing methods have the following two flaws. (1) The

few-shot setting is rather too strict, in which each low-frequency

relation has only a certain number of occurrences (e.g., 5). And

this may not hold in practice. As we know in real-world KGs, the

number of occurrences of entities and relations varies widely and

does not follow a specific number. (2) Most existing works only

focus on the data imbalance problem of relations, while paying

no attention to the long-tail distribution of entities, which is also

critical in practice.

Different from existing methods, we propose WeightE, which is

capable of well tackling the data imbalance issue via attending dif-

ferentially to different entities and relations. Specifically, WeightE

assigns different weights to different entities and relations during

the training procedure. A straightforward idea is to set a weight

parameter for each entity and relation, and update the weights

and embeddings simultaneously during the training process of

KGE models. However, we find this naive approach is not appro-

priate in our case due to the following two reasons. (1) Previous

works [4, 28] have shown that simultaneously learning the repre-

sentations and weights for training data may hinder both learning

processes, leading to unsatisfactory performance. (2) A number of

state-of-the-art KGE models utilize hinge loss or softplus loss as

the objective function. Under this setting, the gradient direction of

entities’ and relations’ weights is single and fixed, severely hinder-

ing the learning process. To this end, in this paper, we utilize the

technique of bilevel optimization to reweight the entities and rela-

tions during the training procedure. In particular, WeightE specially

tailors bilevel optimization for the KGE task, where the goal of the

inner loop is to learn reliable entity and relation representations,

and the outer loop aims to assign appropriate weights for each en-

tity and relation. In this way, WeightE is capable of endowing lower

weights to frequent entities and relations, and higher weights to

low-frequency ones. Under this setting, KGE models are able to pay

more attention to long-tail entities and relations, and learn better

representations for them. It is worth noting that the technique of

reweighting entities and relations is general and flexible, which can

be applied to a number of existing KGE models, e.g., TransE [3],

DistMult [46], ConvKB [24], and RotatE [37]. Finally, we conduct ex-

tensive experiments on benchmark datasets, and results show that

the proposed method is able to appropriately reweight entities and

relations, and consistently outperform state-of-the-art competitors.

In a nutshell, we highlight our key contributions as follows.

• In this paper, we propose a novel model WeightE, which spe-

cially tailors the technique of bilevel optimization to alleviate

the data imbalance issue in KGE.

• The proposed reweighting technique is general and flexible,

which can be applied to a number of existing KGE models.

• Experiments on real-world datasets show that the proposed

method is able to assign appropriate weights for each entity

and relation, and outperform state-of-the-art KGE models.
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2 RELATEDWORK
2.1 Knowledge Graph Embedding
Recent years have witnessed the increasing interest in KGE, which

aims to represent entities and relations in KGs as low-dimensional

vectors. Existing works roughly fall into three categories.

Geometric methods. These methods utilize geometric opera-

tions to represent entities and relations. TransE [3] is one of the

most widely used KGE models, which assumes 𝑣𝑠 + 𝑣𝑟 ≈ 𝑣𝑜 when

(𝑠, 𝑟, 𝑜) holds. 𝑣𝑠 , 𝑣𝑟 and 𝑣𝑜 are embedding vectors of 𝑠 , 𝑟 , and 𝑜 ,

respectively. TransH [43], TransR [19], RotatE [37], Rotate3D [14],

and HAKE [53] also fall into this category.

Tensor decomposition methods. These models assume the

score of a (𝑠 , 𝑟 , 𝑜) triple can be factorized into several tensors [39, 46].

DistMult [46] is a representative model in the category, which

decomposes the score of a triple into two vectors and a diagonal

matrix. ComplEx [39], HolE [25] and ANALOGY [20] further extend

DistMult to achieve better performance.

Neural network methods. These models take advantage of

deep neural networks to represent entities and relations in KGs.

ConvE [11] and ConvKB [24] adopt convolutional neural network

(CNN) to capture the interactions between entities and relations.

R-GCN [31], RGHAT [57] and CompGCN [40] utilize graph neural

network (GNN) to learn KG embeddings.

There is a line of research works that try to embed uncertain KGs.

Note that these works are different from ours. These works focus

on learning entity and relation representations in uncertain KGs, in

which each triple has a ground truth confidence score, indicating

the plausibility of the triple. The higher the score, the more weights

the triple plays during the training procedure. While our work

focuses on general KGs, which do not have ground truth weights

for each entity and relation.

2.2 Data Imbalance Issue in KGE
Although the data imbalance issue in KG has existed for a long time,

related work that aims to tackle this issue is very limited. Most

existing works focus on the link prediction task in KG, in which

each relation only has a limited number of occurrences (e.g., 5-shot).

This task aims to predict the missing links for relations that only

have a few associative triples. Existing few-shot link prediction

models can be divided into two categories: metric learning based

models [45, 49] and meta learner based models [5, 26]. However,

the above methods have the following two flaws, which hinder

them to be applied to KGs in real-world scenarios. (1) The few-shot

setting is too strict, requiring each infrequent relation to have a

certain number of occurrences, which may not hold in practice. (2)

These models only focus on the data imbalance issue for relations,

while ignoring the long-tail distribution of entities.

Apart from the above methods, related work is rather rare. Tran-

Sparse [16] introduces adaptive sparse matrices to facilitate better

learning for infrequent relations. wRAN [51] utilizes an adversarial

procedure to help to adapt features learned from high-frequency

relations to low-frequency ones. These two works only focus on

the data imbalance issue of relations. The most relevant work is

LSU [55], which transfers knowledge from high-frequency enti-

ties/relations to infrequent ones via sharing latent semantic units.

Different from existing methods, in this paper, we reweight entities

and relations, and lift up the weights of the long-tail ones during

the training process.

2.3 Bilevel Optimization
Bilevel optimization is defined as a mathematical paradigm, where

an optimization problem contains another optimization problem

as a constraint [33]. Bilevel optimization is able to optimize two

closely related objectives in an alternate manner [8]. Recently, this

technique has become a timely and important topic due to its great

effectiveness in hyperparameter optimization, meta-learning, and

reinforcement learning [47]. Indeed, bilevel optimization has been

applied to a number of real-world applications. 𝜆OPT [7] uses

bilevel optimization to learn regularized terms in recommender

systems. Franceschi et al. [13] introduce a framework based on

bilevel optimization that unifies gradient-based hyperparameter

optimization and meta-learning for image classification. Chen et

al. [6] apply bilevel optimization to a number of NLP tasks. The com-

bination of bilevel optimization with KGE is limited, AutoSF [52]

uses bilevel optimization to search the score function of knowledge

triples. In this way, the score function of a KGE model is decided in

an automatic manner instead of a hand-designed manner. In this

paper, we make use of bilevel optimization to learn the weights of

different entities and relations in KGE.

3 PRELIMINARIES
In this section, we provide some basic definitions used in this paper.

Definition 1. Knowledge Graph. A knowledge graph is viewed
as a graph G = {(𝑠, 𝑟, 𝑜)} ⊆ E ×R ×E, where E and R are the entity
(node) set and relation (edge) set, respectively.

Definition 2. Frequent/Infrequent Entities/Relations. In a
KG, the entities with top 20% frequencies are named as frequent/high-
frequency entities, while the remaining 80% entities are infrequent/low-
frequency entities. Frequent/Infrequent relations are defined in a sim-
ilar way.

Definition 3. Frequency-aware Triples. For a (𝑠, 𝑟, 𝑜) triple, if
𝑠 and 𝑜 are frequent entities, and 𝑟 is a frequent relation; or 𝑠 and 𝑜
are infrequent entities, and 𝑟 is an infrequent relation, this triple is
named as frequency-aware triples.

4 METHODOLOGY
In this section, we discuss the role that reweighting plays on KGE.

Specifically, we first detail the reweighting technique of WeightE.

Thenwe present how to apply the technique to existing KGEmodels.

Finally, we provide optimizer choices to train WeightE.

4.1 Reweighting Technique on KGE
4.1.1 Overview. Existing KGs suffer from the data imbalance issue.

Specifically, entities and relations conform to a long-tail distribu-

tion. And the long-tail entities and relations cannot be fully trained

during the training process, leading KGE models to learn unre-

liable representations for them. The reweighting technique has

been shown to be an effective way to tackle the data imbalance

issue [32, 34]. However, directly utilizing previous reweighting

methods to KGE is not appropriate. Specifically, we aim to reweight

entities and relations in KG, but the smallest training unit during

869



SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Zhao Zhang et al.

KGE 
Module

Reweighting 
Module

Input 
Triple s r o

Weighted Loss

score function

Figure 2: An illustration of the weighted loss.

KGE training is a triple rather than an entity or a relation. To this

end, we propose the following reweighting method for KGE,

𝐿𝑤 (Θ |𝑊 ) =
∑︁

(𝑠,𝑟,𝑜 ) ∈𝑆𝑇
𝑊(𝑠,𝑟,𝑜 ) · 𝐿(Θ(𝑠,𝑟,𝑜 ) ),

(1)

𝑊(𝑠,𝑟,𝑜 ) =
1

3

(𝑤𝑠 +𝑤𝑟 +𝑤𝑜 ) , (2)

where 𝑆𝑇 is the training set.𝑤𝑠 ,𝑤𝑟 , and𝑤𝑜 are the corresponding

weights for subject, relation, and object, respectively.𝑊(𝑠,𝑟,𝑜 ) is the
weight for the triple (𝑠, 𝑟, 𝑜). Θ represents the parameters of the

KGE model, and Θ(𝑠,𝑟,𝑜 ) denotes the parameters that are related to

the triple (𝑠, 𝑟, 𝑜). 𝐿 is the original loss function of the KGE model,

and 𝐿𝑤 is the corresponding reweighted version. To facilitate a

better understanding, we provide an illustration of the weighted

loss, which is shown in Figure 2. It is worth noting that the method

is general and flexible, and can be applied to a number of existing

KGE models via changing 𝐿. In the following, for simplicity, we

omit the subscript of𝑊 andΘ, thus Eq. (1) changes to 𝐿𝑤 (Θ |𝑊 ) =∑
(𝑠,𝑟,𝑜 ) ∈𝑆𝑇 𝑊 · 𝐿(Θ).
In order to appropriately train the weights of entities and rela-

tions𝑊 and KGE parameters Θ, we formulate the training process

as a bilevel optimization problem, which is shown as

min

𝑊

∑︁
(𝑠,𝑟,𝑜 ) ∈𝑆𝑂

𝐿
©­«𝑣𝑠 , 𝑣𝑟 , 𝑣𝑜 | arg min

Θ

∑︁
(𝑠,𝑟,𝑜 ) ∈𝑆𝐼

𝐿𝑤 (𝑣𝑠 , 𝑣𝑟 , 𝑣𝑜 | Θ,𝑊 )ª®¬ .
(3)

𝑆𝐼 and 𝑆𝑂 are the parts of the training set used to train the inner

and outer loops, respectively, i.e., 𝑆𝐼 ∪ 𝑆𝑂 = 𝑆𝑇 . Specifically, before

each training epoch, we randomly select 80% of the training data as

𝑆𝐼 , and the remaining 20% as 𝑆𝑂 . During the training process, the

inner level aims to learn reliable entity and relation embeddings

with the inner set 𝑆𝐼 and the weighted loss 𝐿𝑤 , and the outer level

targets at learning appropriate weights for each entity and relation

with the outer set 𝑆𝑂 and the original KGE loss 𝐿.

Note that we only update the weights for frequency-aware triples

(cf. Definition 3 in Section 3). For other triples, we set the weights

of entities and relations as 1. We adopt this setting based on the

following reason. According to Eq. (1) and Eq. (2), for a triple (𝑠, 𝑟, 𝑜),
the gradients of 𝑤𝑠 , 𝑤𝑟 and 𝑤𝑜 are in the same direction, i.e., the

values of weights are increased together or decreased together

during training. For triples that are comprised of frequent entities

and relations, we expect 𝑤𝑠 , 𝑤𝑟 and 𝑤𝑜 to decrease. While for

triples that consist of infrequent entities and relations, we expect

𝑤𝑠 , 𝑤𝑟 and 𝑤𝑜 to increase. However, for triples other than the

frequency-aware ones, we expect some values of𝑤𝑠 ,𝑤𝑟 and𝑤𝑜 to

increase, and some values to decrease. Simultaneously increasing

or decreasing𝑤𝑠 ,𝑤𝑟 and𝑤𝑜 would negatively affect some of the

weight values, which may lead to unsatisfactory results. Thus we

set the weights of entities and relations in such triples as 1.

4.1.2 Reweighting Strategy. In this subsection, we provide two

reweighting approaches for KGE.

(1) Fixed Reweighting Approach. To set different weights for each

entity and relation, a naive idea is to manually set a fixed weight

for each entity/relation. One of the methods is to sort the enti-

ties/relations in descending order according to frequency, and select

the frequency of the entity and relation ranked 20% as a pivot. Then

the weights of entities and relations can be defined as

𝑤𝑒 =
𝑓
𝑝𝑖𝑣𝑜𝑡
𝑒

𝑓𝑒
,𝑤𝑟 =

𝑓
𝑝𝑖𝑣𝑜𝑡
𝑟

𝑓𝑟
, (4)

where 𝑓𝑒 and 𝑓𝑟 denote the frequency of entity 𝑒 and relation 𝑟 .

𝑓
𝑝𝑖𝑣𝑜𝑡
𝑒 and 𝑓

𝑝𝑖𝑣𝑜𝑡
𝑟 are the pivot frequency for entity and relation.

Under this setting, the weights of high-frequency entities/relations

are lowered, and the weights of low-frequency ones can be lifted.

However, there are a large number of methods to set the fixed

weights, and experimentingwith them one by one is time-consuming.

In addition, the fixed setting greatly reduces the model flexibility.

Therefore, we propose an adaptive update method in the next part.

(2) Adaptive Reweighting Approach. Instead of the fixed reweight-
ing approach, the adaptive approach can automatically adjust the

weights during iteration. A straightforward idea to train an adaptive

reweighting approach is to set the weights of entities and relations

as trainable parameters, and train the weights and embeddings

simultaneously without bilevel optimization. This setting is not

applicable in our scenario both empirically and theoretically. We

detail the reason as follows.

(i) Empirically, we find this straightforward setting cannot achieve

satisfactory performance. Indeed, this is in line with previous stud-

ies [4, 28], which show simultaneously learning the representations

and weights for training data may hinder both learning processes.

(ii) Theoretically, many state-of-the-art KGEmodels utilize hinge

loss or softplus loss as the objective function. Under this setting,

weights cannot be trained well. Taking the widely used model

TransE as an example, by taking the derivative of Eq. (1), the gradi-

ent of the weight is
𝜕𝐿𝑤 (Θ)
𝜕𝑊

= 𝐿(Θ). Since TransE utilizes margin-

based hinge loss as the objective, the gradient of weight, 𝐿(Θ),
would always be positive, thus the value of weight can only be up-

dated along a single direction, which cannot guarantee a sufficient

training for𝑊 .

To tackle the above issue, in the paper, we specially tailor bilevel

optimization to learn the representations (inner level) and weights

(outer level) of entities and relations. It is worth noting that we

initialize the weights of entities and relations as the way Eq. (4)

shows. We empirically find this initialization trick is beneficial to

achieve better performance.
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Figure 3: An illustration of the bilevel optimization process.

4.1.3 Bilevel Optimization. To learn more robust representations

for entities and relations, WeightE utilizes bilevel optimization for

KGE. Specifically, the inner level learns embeddings, while the outer

level obtains the weights. The nested optimization problem, which

is formulated as Eq. (3) is difficult to solve directly. Alternating

optimization [29] reduces this problem to two simpler optimizations.

In effect, we iteratively perform the following two steps:

• Θ Update. In this step, we fix𝑊 while Θ is optimized using

the weighted loss 𝐿𝑤 with triples (𝑠, 𝑟, 𝑜) sampled from the

inner set 𝑆𝐼 .

• 𝑊 Update. In this step, we fix Θ while𝑊 is optimized using

the original KGE loss 𝐿 with triples (𝑠, 𝑟, 𝑜) sampled from

the outer set 𝑆𝑂 .

Training the inner level optimization is easy. We fix the weights

and only update the KGE parameters. When training the outer loss,

our goal is to find𝑊 that achieves the smallest loss value. In this

step, the outer loss of the current model 𝐿(Θ𝑡 ), i.e., the original
KGE loss, is independent of𝑊𝑡 , where𝑊𝑡 and Θ𝑡 are the weight

and KGE parameters at the 𝑡-th iteration. If Θ𝑡+1 is obtained using

𝑊𝑡 , the outer loss 𝐿(Θ𝑡+1) would depend on𝑊𝑡 . This suggests that

we can first get the next-step KGE parameters Θ̄𝑡+1, and then use

Θ̄𝑡+1 and its gradient to update𝑊𝑡 . We use the word "assumed"

because this update is never actually performed on the model we

ultimately wanted. We only use it to get the direction to update

𝑊𝑡 . We use symbols of the form ·̄ to distinguish between "assumed"

symbols and ordinary symbols.

4.1.4 Obtain Assumed Next-step Embedding. To update𝑊 , we need

to obtain the assumed next-step embedding Θ̄𝑡+1. A critical step

to obtain Θ̄𝑡+1 is to get the gradient of 𝐿𝑤 respect to Θ𝑡 , which is

formulated as follows:

𝜕𝐿𝑤

𝜕Θ𝑡
= ℎ(𝑊𝑡 ,

𝜕𝐿

𝜕Θ𝑡
) =𝑊𝑡

𝜕𝐿

𝜕Θ𝑡
, (5)

where the function of ℎ is to compose the gradients. After calculat-

ing the composed gradients, the assumed next-step embedding will

be obtained by Θ̄𝑡+1 = 𝑓 (𝑊𝑡 ,
𝜕𝐿
𝜕Θ𝑡

), where 𝑓 is the gradient update

function, and will be detailed in Section 4.3.

4.1.5 Minimize the Outer Loss. So far, we have got Θ̄𝑡+1, and the

only thing left to do is to find𝑊 that minimizes the outer loss of

bilevel optimization, i.e., 𝐿. Mathematically, we want to solve

arg min

𝑊

∑︁
(𝑠,𝑟,𝑜 ) ∈𝑆𝑂

𝐿(Θ̄𝑡+1),

𝑠 .𝑡 . 𝑊 ≥ 0.

(6)

Karush-Kuhn-Tucker (KKT) conditions give feasible regions in

𝑊 space for constrained minimization with non-convex objectives,

which makes the search more efficient and stable. The gradient of

outer loss with respect to𝑊 is denoted as 𝐺 ,

𝐺 = ∇𝑊
∑︁

(𝑠,𝑟,𝑜 ) ∈𝑆𝑂
𝐿(Θ̄𝑡+1) . (7)

KKT gives

𝑊 ·𝐺 = 0, 𝐺 ≥ 0, 𝑊 ≥ 0. (8)

We can see that feasible solutions require both 𝐺 and𝑊 to be

non-negative with one of them equalling to zero. According to the

physical meaning of𝑊 , we give a slack version which encourages

𝑊 to be non-negative and 𝐺 to be small.

4.1.6 Illustration. We provide an illustration of the bilevel opti-

mization process, which is shown in Figure 3. To sum up, the whole

process is divided into three phases. The first phase is the inner

level, which fixes𝑊 , and updates the KGE parameters Θ. The sec-
ond and the third phase correspond to the outer level optimization.

Particularly, at the 𝑡-th iteration, Phase 2 gets the gradient of Θ𝑡

with the inner set 𝑆𝐼 . Phase 3 gets the assumed next-step embedding

Θ̄𝑡+1, and updates the weights of entities and relations𝑊 with KKT

conditions.

4.2 Application to KGE Models
In Section 4.1, we present the reweighting technique of KGE. Indeed,

this technique is general and flexible, which can be applied to a

number of existing KGE models. In this paper, we propose WeightE,

which is built on the basis of the popular KGEmodel RotatE [37].We

choose RotatE due to its simplicity and efficacy. Note that we also

apply the reweighting technique with other KGE models to testify

the compatibility, and the results are shown in the Experiment

Section (cf. Section 5.6).

We briefly introduce the base model RotatE. For a given triple

(𝑠, 𝑟, 𝑜), RotatE models each relation 𝑟 as an element-wise rotation

from the subject 𝑠 to the object 𝑜 in the complex space. Specifically,

RotatE first maps the three elements 𝑠 , 𝑟 , and 𝑜 to the complex space,
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then calculates a score for the triple with the rotation operation.

Positive triples are supposed to have higher scores than negative

ones. Given a triple (𝑠, 𝑟, 𝑜), the score function is defined as:

score(𝑣𝑠 , 𝑣𝑟 , 𝑣𝑜 ) = −𝑑𝑟 (𝑣𝑠 , 𝑣𝑜 ) = −∥𝑣𝑠 ◦ 𝑣𝑟 − 𝑣𝑜 ∥, (9)

where 𝑣𝑠 , 𝑣𝑟 , and 𝑣𝑜 are representations of 𝑠 , 𝑟 , and 𝑜 , respectively.

And ◦ denotes the rotation operation. 𝑑𝑟 (𝑣𝑠 , 𝑣𝑜 ) is a distance func-
tion, which measures the distance between 𝑣𝑠 ◦ 𝑣𝑟 and 𝑣𝑜 . Positive
triples are supposed to have smaller distances than negative ones.

The loss function of RotatE is

𝐿 = − log𝜎 (𝛾 − 𝑑𝑟 (𝑣𝑠 , 𝑣𝑜 )) −
1

𝑛

𝑛∑︁
𝑖=1

log𝜎
(
𝑑𝑟

(
𝑣 ′𝑠 , 𝑣

′
𝑜

)
− 𝛾

)
, (10)

where 𝛾 is a fixed margin separating the positive triples with nega-

tive ones. 𝜎 is the sigmoid function. 𝑛 is the negative sampling rate,

i.e., we sample 𝑛 negative samples for each positive triple. (𝑠′
𝑖
, 𝑟𝑖 , 𝑜

′
𝑖
)

is the 𝑖-th negative triple. Substituting Eq. (10) into Eq. (1), we get

the weighted loss of RotatE. Substituting 𝐿 and 𝐿𝑤 into Eq. (3), we

obtain the bilevel optimization of WeightE.

4.3 Optimizer Choices
WeightE can be optimized via a number of optimizers. If the model

uses the SGD optimizer, the update formula to obtain Θ̄𝑡+1 (Phase

3 in Figure 3) is as follows:

Θ̄𝑡+1 = 𝑓 (𝑊𝑡 ,
𝜕𝐿

𝜕Θ𝑡
)

= Θ𝑡 − 𝜂
𝜕𝐿𝑤

𝜕Θ𝑡

= Θ𝑡 − 𝜂𝑊𝑡
𝜕𝐿

𝜕Θ𝑡
.

(11)

To get the gradient of the outer loss 𝐿 with respect to𝑊 , we also

need to calculate
𝜕𝑓

𝜕𝑊𝑡
. With Eq. (11), we can obtain

𝜕𝑓

𝜕𝑊𝑡
= −𝜂 𝜕𝐿

𝜕Θ𝑡
, (12)

Then with the chain rule, we can obtain the gradient of 𝐿 with

respect to𝑊𝑡

𝜕𝐿

𝜕𝑊𝑡
=

𝜕𝐿

𝜕Θ̄𝑡+1

𝜕𝑓

𝜕𝑊𝑡
. (13)

Thanks to the deep learning frameworks such as PyTorch and

TensorFlow, all the above derivation procedures can be handled

automatically.

For the Adam [18] optimizer, we just need to specify 𝑓 as follows:

Θ̄𝑡+1 = Θ𝑡 − 𝜂

√︃
1 − 𝛽𝑡

2√︃
1 − 𝛽𝑡

1

𝑝𝑡√
𝑞𝑡 + 𝜖

,

𝑝𝑡 = 𝛽1𝑝𝑡−1 + (1 − 𝛽1)
𝜕𝐿𝑤

𝜕Θ𝑡
,

𝑞𝑡 = 𝛽2𝑞𝑡−1 + (1 − 𝛽2)
𝜕𝐿𝑤

𝜕Θ𝑡
⊙ 𝐿𝑤

𝜕Θ𝑡
,

(14)

where 𝛽1, 𝛽2 represent two hyperparameters in Adam, which are

set to 0.9 and 0.999. 𝜖 is also a hyperparameter, which is a small

value to avoid the denominator being 0. ⊙ denotes element-wise

multiplication. For the other optimizers such as Adagrad [12], the

optimization can also be processed in similar ways.

5 EXPERIMENT
Following a number of previous works [3, 11, 43, 46], in this section,

we evaluate the learned KG embeddings on the link prediction task.

Link prediction, a.k.a. knowledge graph completion, aims to predict

the missing values in incomplete knowledge triples. More formally,

the goal of link prediction is to predict either the subject in a given

query (?, 𝑟 , 𝑜) or the object in a given query (𝑠, 𝑟, ?). We conduct

experiments to answer the following questions:

• RQ 1: Does WeightE perform better than other state-of-the-

art KGE models?

• RQ 2: How does WeightE learn the weights for entities and

relations in KG?

• RQ 3: Can the reweighting technique be applied to other

KGE models?

5.1 Datasets
We compare WeightE with state-of-the-art baselines using three

benchmark datasets: FB15k-237 [38], WN18RR [11], and YAGO3-

10 [11]. FB15k-237 is extracted from Freebase [2], which provides

general facts of the world. WN18RR is obtained fromWordNet [22],

which provides semantic knowledge of words. YAGO3-10 is a subset

of YAGO3 [21] that describes the attributes of persons. The three

datasets are popular benchmarks for KGE, and are widely used

by a number of previous works. The statistics of the datasets are

summarized in Table 1. And the statistics of frequency-aware triples

in each datasets are summarized in Table 2.

Table 1: Dataset statistics.

Dataset #Entity #Relation #Train #Valid #Test

FB15k-237 14,541 237 272,115 17,535 20,466

WN18RR 40,943 11 86,835 3,034 3,134

YAGO3-10 123,182 37 1,079,040 5,000 5,000

Table 2: Statistics of frequency-aware triples.

Dataset #Train #Frequecy-aware Triples Proportion

FB15k-237 272,115 93645 34.41%

WN18RR 86,835 21880 25.20%

YAGO3-10 1,079,040 391773 36.31%

5.2 Baselines
In this paper, we compare the proposed method with the following

baselines.

• Geometricmethods, including TransE [3], RotatE [37], HAKE [53]

and MuRMP [42].

• Tensor decomposition methods, including DistMult [46], Com-

plex [39], TuckER [1] and MEI [23].

• Neural network methods, including ConvE [11], ConvKB [24],

CompGCN [40] and MRGAT [9].
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Besides, we also compare WeightE with two previous works that

focus on the data imbalance issue.

• TranSparse [16], a KGE model that alleviates the data imbalance

issue with sparse mapping matrices.

• LSU [55], a recent method that tackles the data imbalance issue

with latent semantic units.

In addition, we also compare WeightE with three variants.

• WeightE-param, which abandons the bilevel training procedure.

For WeightE-param, we set the weights of entities and relations

as trainable parameters, and train the weights and embeddings

of entities and relations simultaneously.

• WeightE-fixed, which indicates that we fix the weights of entities

and relations during training. Specifically, the weights are set up

with Eq. (4).

• WeightE-one, which denotes we initialize the weights of entities

and relations with 1, regardless of their frequency. Since WeightE

initializes the weights using the way Eq. (4) shows, we set this

baseline to compare the effectiveness of different initialization

methods.

5.3 Experimental Settings
In the training stage, we adopt Adam [18] as the optimizer to

update all the parameters. All the hyper-parameters are decided

based on the model performance over the validation set via grid

search. The search space is decided as follows: embedding size

{125, 250, 500, 1000}, batch size {128, 256, 512, 1024}, fixed margin

{1, 5, 10, 15, 20}. During the training process, before starting each
epoch, we randomly split 80% of training set as the inner set 𝑆𝐼 , and

20% as outer set 𝑆𝑂 . We clip the weights of entities and relations be-

tween [0.5, 20], this trick prevents over- or under-weighting during
the training process.

In the test stage, we replace the subject and the object with

all entities in KG in turn for each triple in the test set. Then we

compute a score for each corrupted triple, and rank all the candidate

entities according to the scores. Particularly, positive candidates are

supposed to precede negative ones. Finally, we collect the rank of

the correct entity. Twometrics are used to compare the performance

of WeightE with other competitors: (i) Mean Reciprocal Rank (MRR,

the mean of all the reciprocals of predicted ranks); (ii) Hits@𝑛

(H@𝑛, the proportion of ranks not larger than 𝑛). All the results

are reported in the “filtered” setting [3].

5.4 Overall Performance (RQ1)
Experimental results are shown in Table 3. From Table 3, we have

the following findings. (1) Generally, WeightE achieves the best

results compared with all the baselines, which indicates the superi-

ority of the proposed method. From Table 2, the frequency-aware

triples, in front of which we apply an adaptive weight, only ac-

count for 34.41%, 25.20%, and 36.31% of the training data in FB15k-

237, WN18RR, and YAGO3-10, respectively. Yet WeightE is able to

achieve substantial improvements against competitors. We further

analyze the reason. If we name the entities/relations contained by

frequency-aware triples as seed entities/relations, then for the three

datasets, triples containing at least one seed entity/relation account

for 99.4%, 100%, and 100% of the training set, respectively, i.e., almost

all triples. Seed entities/relations can further influence the training

of other entities and relations in the same triple, thus passing the

profitable information from the reweighting technique to all the en-

tities and relations, which guarantees the effectiveness of WeightE.

(2) WeightE substantially achieves better performance than the base

model RotatE. It is worth noting that for a fair comparison with

other baselines, WeightE does not use the self-adversarial negative

sampling trick [37] in RotatE, while WeightE still consistently out-

performs RotatE, which shows the reweighting technique is of great

value for KGE. (3) WeightE-param does not achieve satisfactory

performance. This result is in line with previous studies [4, 28] that

when the number of samples is large, simultaneously learning the

weights and representations of samples may harm both training

processes, leading to unsatisfactory performance. Also, as stated

in Section 4.1.2, a fixed gradient direction hinders the training of

weights. (4) WeightE achieves better results than WeightE-fixed,

which shows that the adaptive learning process of weights is crucial

for model training. And the technique of bilevel optimization, which

we specially tailor for KGE in this paper, is able to learn appropriate

weights for entities and relations. (5) WeightE-one outperforms

all the baselines on 10 out of 12 metrics, which shows even with-

out the frequency-aware initialization, our reweighting technique

is of great benefit for KGE. We also find WeightE obtains better

results than WeightE-one, which indicates the frequency-aware

initialization is capable of further improving the results.

5.5 Weight Analysis (RQ2)
In this section, we provide further analysis about the weights

learned by our reweighting technique.

5.5.1 Comparison between the weights in WeightE and RotatE. We

provide comparison between the weights in the proposed model

WeightE and the base model RotatE. The results are shown in Figure

4. Since RotatE does not learn weights for entities and relations, all

weights are fixed as 1 in RotatE. Comparing weights in WeightE

and the base model RotatE, we find that for infrequent entities and

relations, the average weights in WeightE are higher than that in

RotatE. While for frequent entities and relations, average weights

in WeightE are slightly lower than that in RotatE. Taking the FB15k-

237 dataset as an example, the average weights for frequent and

infrequent entities are 0.84 and 3.29, respectively. The result is

in line with our expectations, i.e., lift the weights of infrequent

entities/relations, and lower the weights of high-frequency ones.

This observation indicates that the proposed reweighting technique

is capable of learning appropriate weights for entities and relations.

5.5.2 Effect of the reweighting technique on different entities and
relations. To further analyze the proposed reweighting technique

on frequent and infrequent entities and relations, we divide the

test set of each dataset into two categories: (1) triples that contain

at least one infrequent element, i.e., for a (𝑠, 𝑟, 𝑜) triple, at least
one of 𝑠 , 𝑟 , and 𝑜 is an infrequent item; (2) other triples, i.e., for

a (𝑠, 𝑟, 𝑜) triple, 𝑠 , 𝑟 , and 𝑜 are all frequent items. These two cate-

gories are denoted as infrequent and frequent triples in Figure 5,

respectively. From Figure 5, we have the following findings. (1)

WeightE outperforms the base model RotatE on both categories

of triples, which indicates the proposed technique is able to learn

better representations for both frequent and infrequent entities
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Table 3: Evaluation results on FB15k-237, WN18RR and YAGO3-10 datasets. Superscripts †, ‡, ♯, § indicate the results are
taken from [53], [42], [30] and the original paper, respectively. ♦ indicates the results are obtained by ourselves. ∗ denotes the
improvement of WeightE is statistically significant compared with the best baseline at p-value < 0.05 over paired t-test.

FB15k-237 WN18RR YAGO3-10

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE
†

0.294 - - 0.465 0.226 - - 0.501 - - - -

RotatE
‡

0.338 0.241 0.375 0.533 0.476 0.428 0.492 0.571 0.495 0.402 0.550 0.670

HAKE
†

0.346 0.250 0.381 0.542 0.497 0.452 0.516 0.582 0.545 0.462 0.596 0.694

MuRMP
‡

0.358 0.273 0.394 0.561 0.481 0.441 0.496 0.569 0.495 0.448 0.591 0.698

DistMult
‡

0.241 0.155 0.263 0.419 0.430 0.390 0.440 0.490 0.340 0.240 0.380 0.540

ComplEx
‡

0.247 0.158 0.275 0.428 0.440 0.410 0.460 0.510 0.360 0.260 0.400 0.550

TuckER
§

0.358 0.266 0.394 0.544 0.470 0.443 0.482 0.526 - - - -

MEI
§

0.359 0.266 0.395 0.544 0.458 0.426 0.470 0.521 - - - -

ConvE
‡

0.325 0.237 0.356 0.501 0.430 0.400 0.440 0.520 0.440 0.350 0.490 0.620

ConvKB
♯

0.230 0.140 - 0.415 0.249 0.056 - 0.525 0.420 0.322 - 0.605

CompGCN
‡

0.355 0.264 0.390 0.535 0.479 0.443 0.494 0.546 0.489 0.395 0.500 0.582

MRGAT
§

0.358 0.266 0.386 0.542 0.481 0.443 0.501 0.568 0.552 0.439 0.561 0.698

TranSparse
♦

0.344 0.233 0.384 0.529 0.488 0.428 0.493 0.569 0.491 0.396 0.539 0.661

LSU
♦

0.336 0.251 0.364 0.508 0.475 0.402 0.468 0.499 0.484 0.409 0.511 0.653

WeightE-param 0.235 0.142 0.251 0.413 0.354 0.317 0.395 0.466 0.373 0.288 0.454 0.521

WeightE-fixed 0.353 0.251 0.379 0.546 0.483 0.435 0.499 0.572 0.529 0.453 0.596 0.684

WeightE-one 0.367 0.274 0.398 0.554 0.499 0.448 0.519 0.590 0.579 0.501 0.625 0.711

WeightE 0.371∗ 0.281∗ 0.404∗ 0.557 0.501∗ 0.448 0.520∗ 0.592∗ 0.580∗ 0.504∗ 0.628∗ 0.713∗

(a) FB15k-237 (b) WN18RR (c) YAGO3-10

Figure 4: Average weights for frequent/infrequent entities/relations in WeightE and RotatE. "freq." and "infreq." are short for
frequent and infrequent, respectively. "ent." and "rel." are short for entity and relation, respectively.

and relations. (2) The improvement of MRR score on infrequent

triples is larger than that on frequent ones. Taking the YAGO3-10

dataset as an example, the MRR improvement on infrequent triples

is 0.107, while the improvement on frequent triples is only 0.040.

This results indicates our method is particularly good at improving

the representations of low-frequency entities and relations. This

finding is in line with our expectations, i.e., alleviating the effect of

long-tail distribution on KGE models.

5.5.3 Case studies. We also provide case studies to see the effect

of the proposed reweighting technique. We randomly sample 6

test triples in the test set of FB15k-237, which are shown in Ta-

ble 4. For the each triple, we collect the ranks for predicting (𝑠, 𝑟, ?)
and (?, 𝑟 , 𝑜), and report the averaged rank. From Table 4, we have

two observations. (1) The ranks after reweighting are significantly

improved compared with ranks before reweighting, which again

indicates the superiority of the proposed reweighting technique. (2)

We find the weights of high-frequency entities/relations is below

1.0, while the weights of low-frequency ones are above 1.0. This

observation validates that WeightE is able to assign appropriate

weights to entities/relations, i.e., lift the weights for low-frequency

ones, while lower the weights for high-frequency ones.
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Table 4: Case Studies for triples in FB15k-237. Red and blue fonts denote high-frequency and low-frequency entities/relations,
respectively. Numbers in square brackets are learned weights.

Triples

Rank Before

Reweighting

Rank After

Reweighting

1

(A Beautiful Mind [0.79], film_language [0.87], English [0.52]) 7 2

(Denzel Washington [0.73], person_nationality [0.73], United States of America [0.5]) 8 1.5

2

(Apple Inc. [1.24], place_founded [3.62], Cupertino [1.29]) 10 2.5

(Transformers [8.73], film_written_by [1.97], Roberto Orci [1.28]) 14 3

3

(A.I. Artificial Intelligence [1.06], film_produced_by [1.12], Steven Spielberg [0.67]) 5 1

(Florida [0.76], location_contains [0.72], Tallahassee [1.31]) 7 2.5

Table 5: Results of reweighting upon different representative KGE models.

FB15k-237 WN18RR YAGO3-10

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE 0.294 - - 0.465 0.226 - - 0.501 - - - -

TransE + Reweighting 0.343 0.247 0.351 0.499 0.287 0.265 0.307 0.529 0.508 0.419 0.512 0.677

DistMult 0.241 0.155 0.263 0.419 0.430 0.390 0.440 0.490 0.340 0.240 0.380 0.540

DistMult + Reweighting 0.292 0.223 0.336 0.483 0.475 0.423 0.466 0.507 0.376 0.282 0.413 0.579

ConvKB 0.230 0.140 - 0.415 0.249 0.056 - 0.525 0.420 0.322 - 0.605

ConvKB + Reweighting 0.276 0.203 0.322 0.481 0.297 0.192 0.311 0.543 0.479 0.381 0.524 0.663

RotatE 0.338 0.241 0.375 0.533 0.476 0.428 0.492 0.571 0.495 0.402 0.550 0.670

WeightE 0.371 0.281 0.404 0.557 0.501 0.448 0.520 0.592 0.580 0.504 0.628 0.713

M
RR

(a) FB15k-237 (b) WN18RR (c) YAGO3-10

Figure 5: Average MRR score of different test triples. "infreq.",
"freq.", and "trip." are short for infrequent, frequent, and
triples, respectively.

5.6 Model Flexibility (RQ3)
To testify the flexibility of the reweighting technique, we apply the

proposed technique to other representative KGE models, including

TransE, DistMult, and ConvKB. Note that the above three models

are representative geometric method, tensor factorization method,

and neural network method, respectively. The results are shown

in Table 5. We divide the results into four groups, and each group

contains the base model and its reweighting counterpart. Results

in bold font indicate the better results in each group. We find the

reweighting versions consistently and substantially outperform the

original versions, which manifests the flexibility and extendibility

of the proposed technique. Also, the results demonstrate that the

technique is compatible with a wide range of KGE models, and

could serve as a plug-and-play component for a number of existing

methods. We leave the potential of the reweighting technique upon

more advanced KGE models to be discovered.

6 CONCLUSION
In this paper, we propose a novel KGE method WeightE, which

attends differentially to different entities and relations. Particularly,

WeightE specially tailors bilevel optimization for the KGE task,

where the inner loop attempts to learn reliable entity and rela-

tion representations, and the outer loop aims to assign appropriate

weights for each entity and relation. With the reweighting tech-

nique, WeightE is able to endow higher weights to low-frequency

entities and relations, and lower weights to high-frequency ones.

Furthermore, the proposed reweighting technique is general and

flexible, which can be applied to a number of existing KGE models.

Evaluation on three benchmark datasets demonstrates the effec-

tiveness of WeightE.
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