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a b s t r a c t 

Malicious domains are crucial vectors for attackers to conduct malicious activities. With the increasing 

numbers in domain-based attack activities and the enhancement of attacker evasion methods, the de- 

tection of malicious domains has become critical and increasingly difficult. Statistical feature-based and 

graph structure-based detection methods are mainstream technical approaches. However, highly hidden 

domains can escape feature detection, and the detection range of graph structure-based methods is lim- 

ited. Based on these, we propose a malicious detection method called HANDOM. HANDOM combines 

statistical features and graph structural information to neutralize their limitations, and uses the Hetero- 

geneous Attention Network (HAN) model to jointly handle both information to achieve high-performance 

malicious domain classification. We conduct experimental evaluations on real-world datasets and com- 

pare HANDOM with machine learning methods and other malicious detection methods. The results 

present that HANDOM has superior and robust performance, and can identify highly hidden domains. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

The Domain Name System (DNS) Mockapetris (1989) serves as 

he infrastructure of the Internet, enabling the mapping of do- 

ains to IP addresses. As the Internet grows, attackers use dy- 

amic DNS-based agile techniques to achieve highly variable FQDN 

nd IP address mappings for malicious activities, such as launch- 

ng APT attacks, manipulating botnets Hao et al. (2009) , spreading 

alware On (2016) , locating Command and Control Server (C&C 

erver) Abley (2014) ; Antonakakis et al. (2012) ; Kara et al. (2014) ;

hao et al. (2015) , performing covert communication, etc. There- 

ore, the detection of malicious domains as the main attack 

edium is crucial Zhauniarovich et al. (2018) . 
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Existing malicious domain detection methods are mainly di- 

ided into two categories: statistical feature-based detection meth- 

ds and graph structure-based detection methods. Statistical 

eature-based detection methods analyze DNS data and select sta- 

istical features that can distinguish malicious behavior of domains, 

nd then train models using machine learning or deep learning 

lgorithms to discover more malicious domains. However, the ef- 

ectiveness of the features gradually decreases with the develop- 

ent of defense evasion techniques. Researchers start to use graph 

tructure-based detection methods. Graph structure-based detec- 

ion methods consider the association relationships between do- 

ains and construct domain graphs based on structural infor- 

ation, to discover unknown malicious domains associated with 

nown malicious domains in the graph. This type of detection 

echnique is robust for defense, but cannot identify malicious do- 

ains that are not associated with known domains in the graph. 

These two categories of studies complement each other well. 

t first glance, one can simply deploy two types of detection sys- 

ems, namely, statistical feature-based and graph structure-based 

ystems, to achieve both high adaptability and coverage. How- 

https://doi.org/10.1016/j.cose.2022.103059
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2022.103059&domain=pdf
mailto:wangqing@iie.ac.cn
mailto:dongcong@iie.ac.cn
mailto:jianshijie@iie.ac.cn
mailto:dudan@iie.ac.cn
mailto:luzhigang@iie.ac.cn
mailto:qiyinhao@iie.ac.cn
mailto:handongxu@iie.ac.cn
mailto:liuyuling@iie.ac.cn
mailto:xma.cs@xjtu.edu.cn
mailto:wangfei@ict.ac.cn
https://doi.org/10.1016/j.cose.2022.103059


Q. Wang, C. Dong, S. Jian et al. Computers & Security 125 (2023) 103059 

e

n

t

l

r

f

a

c

a

b

d

t

b

t

k

e

o

m

r

d

l

p

c

i

t

i

D

g

r

g

u

t

t

b

o

l

v

s

i

S

l

p

2

d

b

D

t

T

c

m

2

s

D

e

l

t

b

e

w

s

a

S

F

m

N

c

o

u

V

t

r

a

t

m

p

P

l

t

a

a

e

S

m

u

d

g

l

m

a

g

f

d

c

s

a

s

m

m

ver, concurrently deploying two types of detection systems is 

ot cost-effective. More importantly, deploying two separate de- 

ection systems, though complementing each other, cannot seam- 

essly and automatically facilitate each other with their detection 

esults. Seamlessly combining two types of detection systems to 

acilitate each other is of fundamental importance. The reasons 

re twofold. First, the statistical feature-based detection method 

ontinuously adjusts behavior patterns of malicious domains to 

chieve high adaptability, which can provide the graph structure- 

ased detection method with malicious behavior pattern mining of 

omains that are not associated with known malicious domains in 

he graph. Second, the graph structure-based detection method can 

uild strong connections between domains and discover poten- 

ially unknown malicious domains associated with them based on 

nown malicious domains, thus achieving high accuracy and cov- 

rage detection. We develop our study based on these two types 

f information. 

In this paper, we observe the behavioral differences between 

alicious and benign domains in terms of spatial-temporal cor- 

elation, which are the interactive behavior patterns of malicious 

omains in the attack period and the resource distribution of ma- 

icious domains are different from benign domains, and then we 

ropose HANDOM based on these observations. HANDOM first 

onstructs a heterogeneous graph to represent the resource shar- 

ng relationship between domains based on the correlation of spa- 

ial context, that is, the query behaviors and registration behav- 

ors between domains, client hosts and registrants. Then, HAN- 

OM extracts the time-series features for each domain node in the 

raph based on the behavioral patterns of temporal contextual cor- 

elation. Finally, HANDOM uses the HAN model to synthesize the 

lobal graph structure information and local domain features. HAN 

ses node-level and semantic-level attention mechanisms to ob- 

ain the final embedding vector for each domain in the graph, and 

ransforms the malicious domain detection problem into a HAN- 

ased node classification. Finally, we demonstrate the superiority 

f HANDOM in multidimensional experiments. 

The main contributions of this paper are summarized as fol- 

ows: 

• We propose a method based on Heterogeneous Attention Net- 

work model to detect malicious domains. We model the in- 

teractive relationships between domains, client hosts, and do- 

main registration information, and design multiple meta-paths 

as well as heterogeneous graphs, and extract feature attributes 

for each domain node in the graph. We use the HAN model 

to learn the maliciousness of domains and transform the mali- 

cious domain detection problem into a HAN-based node classi- 

fication. 

• We propose a HANDOM method that can detect highly hid- 

den malicious domains, which uses resources sharing based on 

spatial context correlation and behavioral patterns information 

based on temporal context correlation, to capture attack be- 

haviors of domains at both structural-local levels. Experiments 

prove that HANDOM is effective in detecting highly hidden ma- 

licious domains. 

• We show our method’s high robust performance by varying the 

number of training label domains. Meanwhile, we demonstrate 

the superiority of our method by comparing it with traditional 

machine learning methods and other existing detection meth- 

ods. 

We organize the rest of the paper as follows. Section 2 re- 

iews related work of malicious domain detection. Section 3 de- 

cribes our method motivation. Section 4 introduces the prelim- 

nary. Section 5 introduces the method architecture of HANDOM. 

ection 6 presents the experimental results. Section 7 shows the 
2 
imitations and future work of HANDOM. Section 8 concludes the 

aper. 

. Related works 

With the development of attacker technology and changes in 

omain production mechanisms, traditional blacklist and whitelist- 

ased detection methods cannot cope with the large amount of 

NS data generated in the network. Researchers investigate de- 

ection models that can automatically detect malicious domains. 

here are two mainstream technical methods for detecting mali- 

ious domains: statistical feature-based and graph structure-based 

ethods. 

.1. Statistical feature-based methods 

In statistical feature-based detection methods, researchers ob- 

erve the differences between malicious and benign domains in 

NS data, and extract statistical features from DNS data that can 

ffectively distinguish malicious domains, and then use machine 

earning or deep learning algorithms to train malicious domain de- 

ection models. 

Researchers usually determine the maliciousness of domains 

ased on their behavioral features during network activities. For 

xample, Bilge et al. Bilge et al. (2014) proposes EXPOSURE, 

hich extracts four types of network traffic features from pas- 

ive DNS data and uses machine learning algorithms to detect 

ny domain associated with malicious activities. Samuel et al. 

chüppen et al. (2018) uses machine algorithms such as Random 

orest (RF) to identify unknown Algorithmically Generated Do- 

ains (AGDs) by extracting domain character-level features from 

XDomain data. Kountouras et al. Kountouras et al. (2016) extracts 

orrelation features in DNS queries and uses only a small number 

f known malicious domains to calculate the similarity between 

nknown domains and known malicious domains. Vissers et al. 

issers et al. (2017) is the first study to shift the focus of detection 

o malicious activities, which uses a hierarchical clustering algo- 

ithm to classify domains according to different types of malicious 

ctivities. He et al. He et al. (2019) extracts domain character fea- 

ures, PDNS features, and the domains relationship features by a 

odified graph embedding algorithm from Passive DNS data. Ex- 

eriments have proven that these features achieve better results. 

ark et al. Park et al. (2022) extracts features based on domains 

inguistic patterns, and then uses an unsupervised approach to de- 

ection malicious domains. In addition to using machine learning 

lgorithms for detection, deep learning-based detection methods 

re popular because they eliminate manual feature extraction. For 

xample, Bharathi et al. Bharathi and Bhuvana (2019) uses the Long 

hort-Term Memory (LSTM) model and the bidirectional LSTM 

odel to automatically extract useful features of AGD domains and 

se them for training the detection model. Some researchers use 

eep learning algorithms in conjunction with machine learning al- 

orithms, Vinayakumar et al. Vinayakumar et al. (2019) uses a deep 

earning-based framework I-DGA-DC-Net combined with classical 

achine learning algorithms for AGD detection. 

Statistical feature-based detection methods have been effective 

t first. As the attacker’s evasion tactics increase, the attacker dis- 

uises the malicious domain as a benign domain by changing its 

eatures, such as the character-level distribution features of the 

omain and the number of domain-mapped IP addresses, thus 

ausing poor robustness of these features. Attackers easily evade 

tatistical feature-based detection methods that rely on features 

lone, so researchers have proposed to detect domains by using as- 

ociation relationships that describe malicious behaviors between 

alicious domains, which is the graph structure-based detection 

ethod. 
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Fig. 1. Behavioral differences between malicious and benign domains. 
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.2. Graph structure-based methods 

The graph structure-based approach first constructs association 

ules through the relationships between domains, and then forms 

 domain graph based on the association rules. By giving a portion 

f information about known malicious domains, a graph inference 

lgorithm is used to infer the unknown malicious domains in the 

raph associated with known malicious domains. 

Researchers form domain-IP bipartite graphs using mapping 

elationships between domains and their mapped IP addresses 

halil et al. (2016) ; Liang et al. (2020) ; Peng et al. (2019) , or

omain-host bipartite graphs using query relationships for client 

osts accessing domains Lee and Lee (2014) ; Oprea et al. (2015) ;

ahbarinia et al. (2015) , and then build domain homogeneous 

raphs containing only one association relationship and one type 

f node on top of these graphs. MalShoot Peng et al. (2019) builds 

 domain graph based on the association of domain-mapped 

P addresses, and uses graph embedding techniques to embed 

NS resolution data of domains for training classification. Oprea 

t al. Oprea et al. (2015) constructs a domain host bifurcation 

raph by studying suspicious communications between hosts in- 

ide an enterprise network and external domains. Rahbarinia et al. 

ahbarinia et al. (2015) proposes Segugio, which constructs a 

omain-host dichotomous graph based on the association between 

he client host and its queried domains, and uses machine learning 

lgorithms to train the detection classifier. 

Since homogeneous graphs can only represent one type of 

odes or edges, which cannot express complex DNS scenarios 

nformation. To address this limitation, researchers use hetero- 

eneous graphs to model the various relationships between do- 

ains Sun et al. (2019, 2020) ; Xsa et al. (2020) . Sun et al.

un et al. (2019) uses a heterogeneous information network (HIN) 

odel that represents the relationships between client hosts, do- 

ains and IP addresses, and uses a transduction classification 

ethod to detect malicious domains in the HIN. Based on Sun 

t al. Sun et al. (2019) , Sun et al. Sun et al. (2020) proposes a

eterogeneous graph convolutional network-based method, which 

ombines the graph convolutional networks (GCN) and attention 

echanisms to detect malicious domains. 

Graph structure-based detection methods are less likely to be 

ircumvented by exploiting the association relationships between 

omains. However, these detection methods have limitations in 
f

3 
etection scope and can only identify malicious domains asso- 

iated with known malicious domains in the graph. To address 

he boundaries of the above research methods, HANDOM com- 

ines statistical feature-based and graph structure-based methods 

o achieve high adaptability and high detection coverage. HAN- 

OM builds the heterogeneous graph to represent strong correla- 

ion relationships between domains to avoid evasion by attackers, 

nd extracts temporal correlation-based domain features to un- 

over more malicious domains with the same malicious behavior 

atterns. 

. Motivation 

Attackers use dynamic DNS-based agile techniques such as Fast- 

lux and Domain-Flux to hide malicious services’ actual locations. 

s shown in Fig. 1 (a), attackers may use DNS techniques to ma- 

ipulate domains at different times in the Cyber Kill Chain (e.g., 

econnaissance, delivery, command and control) for highly stealthy 

ttacks such as sending spams, hiding C&C servers, and trans- 

itting data through DNS covert channels. Highly stealthy mali- 

ious domains have the following characteristics: using public plat- 

orms such as Content Delivery Networks (CDNs) for domain to 

P address mapping to circumvent resource connections; disguis- 

ng their network communication traffic as legitimate traffic and 

educing their activity trajectory to show less frequent activity. In 

his way, it disguises itself as a benign domain to evade detec- 

ion systems. Many new malicious domains with short survival cy- 

les are also registered to evade detection. These evasion methods 

ake the detection of highly stealthy malicious domains more dif- 

cult. 

The main motivation of this paper is that even if an attacker 

erforms evasive means in carrying out malicious activities, there 

till consist temporal and spatial correlation between the behav- 

ors of malicious domains. This correlation is difficult to circum- 

ent simultaneously by attackers for cost reasons. By distinguishing 

he behavioral differences between malicious and benign domains 

n terms of spatial-temporal relevance, we can solve the problems 

f highly stealthy malicious domain detection under attackers’ cir- 

umvention means. We analyze the behavioral differences from the 

ollowing two aspects, as shown in Fig. 1 . 

Spatial context-based correlation of resources sharing. We 

ound that based on the attacker’s behaviors in the Cyber Kill 
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hain, the attacker’s control host and the infected host group usu- 

lly have spatial correlation when conducting malicious activities, 

uch as attackers use overlapping infected host groups at different 

tages of the attack to achieve malicious behaviors, which leads 

o anomalous correlations between the query records of domains. 

n the other hand, attackers usually register a large number of 

omains in the same period in order to save costs as shown in 

ig. 1 (b), the domains belonging to the same registration batch 

hare the same registration information, which leads to the re- 

ources sharing correlation between domains. In contrast, benign 

omains are accessed by hosts with a more random distribution 

nd more unique registration information. 

Temporal context-based correlation of behavioral patterns. 

orrelation based on temporal contextual information. When con- 

ucting malicious activities, there are usually strong temporal cor- 

elations between malicious domains manipulated by attackers, as 

ell as similar abnormal behaviors based on time, such as mali- 

ious hosts accessing domains with a certain regularity and peri- 

dicity, with fixed query time patterns. Each malicious organiza- 

ion has its specificity in domain query patterns, from which ex- 

ract common features among malicious domains by analyzing the 

ime series of domain queries from multiple organizations. In con- 

rast, benign domains exhibit more randomness in being accessed 

y hosts without specific query times and behavior patterns. 

Therefore, based on the above two distinct behavior differ- 

nces in spatial-temporal correlations between malicious and be- 

ign domains, we propose HANDOM to mine the query pat- 

erns of domains and resource association relationships. HANDOM 

onstructs rich heterogeneous graph structures from spatial corre- 

ations based on domain query records as well as resource dis- 

ributions, then mines query patterns of malicious domains, and 

xtracts time series features from temporal correlation-based 

nomalous behaviors, and then uses the HAN model to embed 

hese two kinds of information. 

The reason why we choose HAN model is that HAN can well 

olve the problem of mutual integration of graph structure infor- 

ation and statistical features. HAN is a novel semi-supervised 

eterogeneous graph neural network based on hierarchical atten- 

ion Wang et al. (2019) , which can classify nodes for heterogeneous 

raphs Huang et al. (2020) ; Long et al. (2020) ; Zhao et al. (2020) .

ince C&C domains can easily circumvent existing domain detec- 

ion methods because they are highly stealthy and can remain dor- 

ant for a long time without being detected, and attackers will 

nvolve C&C domains in as few resource associations as possible. 

sing the HAN model not only supports the resource association 

etween domains, but also analyzes the behavior pattern of each 

omain node, which can well present the malicious information of 

omains through two dimensions. HAN based on a two-layer at- 

ention mechanism can effectively combine global graph structure 

nformation as well as local node feature information to learn the 

aliciousness of each domain in the graph and classify it correctly. 

he node-level attention-based mechanism in HAN can learn vari- 

us types of nodes associated with the domain separately, and ef- 

ectively handle the feature attributes of nodes in the graph; the 

emantic-level attention-based mechanism can effectively learn the 

mportance of different meta-paths, and thus can deal with multi- 

le types of nodes and multiple association relations in the hetero- 

eneous graph scenarios we constructed in a hierarchical manner. 

. Preliminary 

In this section, we first describe the definition of the heteroge- 

eous graph, meta-path, and formulate the malicious domain de- 

ection problem based on the HAN model. 

Definition 1. (Heterogeneous Graph.) A heterogeneous graph 

s a graph containing two or more types of objects or links, given 
4 
 heterogeneous graph G = (V, E), where V is the set of objects 

n the graph G , E is the set of links, and the node type mapping

unction φ: V → Z and the link type mapping function �: E → R

enote the types of nodes and links, respectively, where Z is the 

et of object types and R is the set of link types, where | Z| + | R | >
. In the heterogeneous graph, objects can be connected by differ- 

nt links, which are called meta-paths. 

Definition 2: (Meta-Path.) Different meta-paths are used to 

epresent complex association relations between different objects. 

or example, the meta-path between object Z 1 and Z i can be repre- 

ented by the relation R = R 1 ◦ R 2 ◦ ... ◦ R i −1 , where ◦ denotes the

omposition operator on relations, which can be described as: 

 1 
R 1 → Z 2 

R 2 → · · · R i −1 → Z i (1) 

hich can also be abbreviated as Z 1 Z 2 ... Z i . 

Definition 3. (Heterogeneous Attention Network) . The HAN 

odel is a semi-supervised graph neural network for the hetero- 

eneous graph. The input of the HAN contains the following three 

ypes of data: the heterogeneous graph G = (V, E ) , where V and E 

re the sets of nodes and links; the meta-path set P which is com- 

osed of relations R ; the node feature matrix X denotes the feature 

ector of nodes V , where x i denotes the set of features of node v i .
AN uses a two-level attention mechanism structure: node-level 

ttention and semantic-level attention mechanism to learn node 

mbeddings in HAN for specific tasks, such as node classification 

asks. 

Definition 4. (Malicious Domain Detection Based on HAN 

odel.) We formulate the malicious domain detection problem as 

 node classification problem on the HAN model. We apply the fol- 

owing information into the HAN model: the heterogeneous graph 

 constructed based on the association relations between domains; 

he set of meta-paths P constructed based on the set of association 

elations R of domains; the feature matrix X of domains. Given 

he label of nodes, HAN uses the two-layer attention mechanism 

o learn the weights of each node and each meta-path, then get 

he final malicious preference features of each domain node as the 

emantic-specific embedding Z , Z is used in combination with the 

ross-entropy loss function for the node of malicious domains clas- 

ification task. 

. Method design 

.1. Method overview 

The method architecture of HANDOM is shown in Fig. 2 , which 

ontains three parts: graph construction, feature design and HAN- 

ased malicious domain detection model. By inputting DNS log 

ata and Whois data, HANDOM first constructs a heterogeneous 

raph and the meta-path set, which can represent the associa- 

ions between host, domain, and domain registration information 

n DNS scenarios. HANDOM then extracts time series-based and 

egistration-informed domain features for each domain node in 

he graph, which is used to mine the behavior patterns of ma- 

icious domains. After that, HANDOM inputs both the heteroge- 

eous graph, the meta-path set, and the feature matrix to the 

AN model, and generates a domain graph containing only do- 

ain nodes based on the meta-path set. Finally, we define a 

ross-entropy loss function for HAN’s semi-supervised classifica- 

ion model, and train the HAN model by giving a portion of the la- 

eled domain nodes in the domain graph. The trained HAN-based 

odel can detect whether the unknown domains in the domain 

raph are malicious or not. 
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Fig. 2. The architecture of HANDOM. 
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.2. Graph construction 

Based on the two major spatial contextual association facts that 

ttackers use overlapping clusters of infected hosts at different 

tages of the attack and malicious domain registration informa- 

ion is cross-used, we construct the following graph association 

ules: i) An association exists between domains that are queried 

y the same host within the time window. ii) An association exists 

etween domains associate with the same registrant or technical 

mail within the time window. Then HANDOM uses the graph as- 

ociation rules and following two types of data to construct the 

eterogeneous graph G . The first type of data is DNS log data: the

uery records of client hosts accessing domains within the time 

indow are extracted from the real network environment, mainly 

ncluding the information of hosts accessing domains and their 

uery timestamps, which are used to construct query relationships 

f client hosts accessing domains. The second type of data is Whois 
5

ata: Whois data includes the entire lifecycle of the domain and 

egistration information, such as domain registration date, domain 

urvival time, registrant email address, and technical email address, 

hich is used to construct resource association relationships be- 

ween domains. 

The constructed heterogeneous graph G = (V, E) contains four 

ypes of nodes V and three types of connection relationships E. 

odes include four types: domains, client hosts, registrant emails, 

nd technical emails. Connection relationships R = (R 1 , R 2 , R 3)

ontain three kinds of association relations: the query relationship 

 1 between domains and hosts, and the association relationship 

 2 between domains and registrant emails, the association rela- 

ionship R 3 between domains and technical emails. We use three 

atrices: Q i j , AR i j , AT i j to represent connection relationships, and 

xtract the following three symmetric meta-paths (the node types 

f both the start and endpoints of the meta-path are domains) 

ased on the above three association relationships, including Host
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Table 1 

Description of relationships and meta-paths. 

Relationship Description Meta-path 

R 1 Q i j represents the query relation between host and domain, if client i queries 

domain j, Q i j = 1, else Q i j = 0 

Host meta-path: domain 
Q → Host 

Q T → domain 

R 2 AR i j represents the association relation between registrant email and domain, 

if the registrant email i is associated with domain j, AR i j = 1, else AR i j = 0 

Registrant Email (RE) meta-path: domain 
AR → RE 

AR T → domain 

R 3 AT i j represents the association relation between technical email and domain, 

if technical email i is associated with domain j, AT i j = 1, else AT i j = 0 

Technical Email (T E) meta-path: domain 
AT → T E 

AT T → domain 
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Table 2 

Feature Description. 

Data Source Feature 

Category 

Sub - Category 

DNS Logs F1 a : Total number of hosts. 

b : Discrete indicators of T 1 , mean, peak,. 

F2 a : Total number of network segments. 

b : Discrete indicators of T 2 , mean, peak,. 

F3 a : Mean and peak and discrete indicators of 

T 3 . 

b : Maximum and minimum value of T 3 . 

c : Difference value of maximum and 

minimum of T 3 . 

F4 a : Discrete indicators of T 4 under hour time 

units. 

b : Maximum counts divide total counts of T 4 . 

Whois Data F5 a : Survival cycle length of per domain. 

b : Longest and shortest survival period of per 

domain. 

c : Number of email addresses. 

d : Character similarity of each nameserver. 

a

y

c

h

h

n

v

v

f

w

m

v

i

a

o

f

t

o

w

d

t

t

f

d

t

h

w

a

l

eta-path based on R 1 , Registrant Email (RE) meta-path based on 

 2 , and Technical Email (T E) meta-path based on R 3 , as shown in

able 1 . 

DNS log data obtained directly from the real network contains a 

arge amount of dirty data, as there are large proxy servers query- 

ng domains resulting in lots of traffic records, and clients query- 

ng misspelled domain records, etc. These traffic are ineffective for 

alicious domain detection and consume a lot of computing re- 

ources Rahbarinia et al. (2015) ; Sun et al. (2019) . 

We prune the constructed graphs by filtering rules to remove 

edundant data and provide high-quality data support for sub- 

equent detection: Inactive clients and email addresses. Clients 

ith queries less than K f (we set K f = 2) domains and email ad-

resses that map to only one domain are considered as inac- 

ive, and we remove them because we focus on domains with ac- 

ual query behaviors, not misoperations due to syntax errors or 

uery errors. Public email addresses. We define email addresses 

ith specific company names such as Microsoft, Google, and Al- 

baba as public email addresses, such as domains@microsoft.com. 

e remove email addresses whose registrant email addresses or 

echnical email addresses are public information. Public email ad- 

resses not only map a large number of malicious domains, but 

re also used by benign domain registrants, so this type of email 

ddress nodes incur significant resource consumption and do not 

ontain substantial malicious association information. Single email 

ddresses. Email addresses that map to only one domain are dis- 

arded as they do not contribute to label propagation. We follow 

he above rules for graph construction and keep all domains with 

alicious information and associated nodes. 

.3. Feature design 

By analyzing the DNS logs, we found those client hosts used 

y attackers are divided into different divisions of labor, such as 

canning, random access, obtaining the address of the Command 

nd Control communication server, etc. Hosts infected by the same 

ttacker tend to query the exact malicious domains, and the query 

ecords with similar regularity in time. Since the interaction behav- 

ors of attackers in the Cyber Kill Chain are time-related, we per- 

orm a time series analysis of the collection of DNS queries. There 

re resource associations in the malicious domains registered by 

he attackers, so we also perform a domain registration analysis of 

hois data. 

We tracked DNS logs and Whois data within time window pe- 

iods, statistically analyzed domains’ behavior patterns, then ex- 

racted time-series features and domain registration features from 

he following five facts to indicate domain’s malicious behaviors. 

As shown in Table 2 , where the feature categories of F1-F4 are 

ime series features, the feature category of F5 is domain name 

egistration features. We provide a brief description of these fea- 

ure names in the table and explain in detail how to calculate these 

eature values in the text. Time series analysis focuses on the in- 

erdependence of time-based data series. The mean, peak, variance, 
6 
nd standard can be used as discrete measures for statistical anal- 

sis of time series. 

The number of hosts visiting the domain. Based on the prin- 

iple that malicious domains are usually visited by more malicious 

osts, we extract the feature category: F1. We extract the list of 

osts visiting the domain within the time window, calculate the 

umber of each host visiting the domain under each time inter- 

al, and extract the following features: the total number of hosts 

isiting the domain (F1-a); the number distribution sequence T 1 

ormed by different hosts visiting the domain based on time, from 

hich extracts the discrete indicators of T 1 (F1-b), such as the 

ean, variance, peak, to reflect the trend of the number of hosts 

isiting the domain over time. These features indicate the regular- 

ty of the distribution of hosts accessing malicious domains, and 

re used to detect malicious domains accessed by a large number 

f infected hosts and malicious domains with abnormal host access 

requency distribution. 

Resource diversity of hosts. Based on the fact that the same at- 

acker usually attacks neighboring client hosts, and a large number 

f infected hosts typically belong to the same network segments, 

e extract the segment feature category: F2. Within the time win- 

ow, we extract the list of different network segments to which 

he hosts visit the domain at each time interval, which is called 

he segment diversity sequence T 2 . Calculate the following features 

rom T 2 : the number of different network segments accessing the 

omain(F2-a); the mean, variance, peak, and other discrete indica- 

ors of T 2 (F2-b). These type of features can obtain the diversity of 

ost resources accessing the domain to detect malicious domains 

ith concentrated resource distribution. 

Domain query time change rate. When conducting malicious 

ctivities, sudden cut-in and cut-out operations by attackers can 

ead to a significant increase or decrease in the number of domain 
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ueries, so we extract the feature category F3. Within the time 

indow, we extract the time series T 3 of domain queries differ- 

nce value, statistically analyze the domain query time change rate 

n daily and second units, and extract the following features: sta- 

istical values such as variance, and peak in domain queries differ- 

nce value list T 3 (F3-a); the maximum and minimum query time 

ifference (F3-b); and the difference between the maximum and 

inimum query time difference (F3-c), to detect the malicious do- 

ains with unstable queries and surprise malicious domains with 

nstable and burst features. 

Domain query time period preference. Based on the fact that 

ttackers usually have their attack preferences, if attackers tend 

o launch attacks at night, malicious domains will have frequent 

uery records at night to extract feature category F4. Extract the 

ime series list T 4 of the number of times the domain is queried

ithin the time window, calculate the number of queries in each 

ime interval, and extract the following features: mean, variance 

nd peak value in the query count sequence list T 4 under hour 

ime unit (F4-a); the ratio of maximum access counts to the total 

ccess counts under the hour time unit (F4-b). The set of mali- 

ious domains with similar query time preferences is detected by 

he feature that malicious domains have similar query time prefer- 

nces among them. 

Domain registration feature. The full lifecycle of a domain 

efers to the whole process of domain registration, update and can- 

ellation, which can happen many times. Malicious domains usu- 

lly have frequent registration, cancellation and other survival up- 

ate operations, with a short survival period, thus extracting the 

eature category F5. We calculate the average survival cycle length 

f the domain (F5-a), which is calculated by dividing the sum of all 

urvival cycles of the domain by the number of cycles; the longest 

nd shortest survival period of the domain (F5-b); the number of 

omain email addresses (F5-c); the character similarity between 

omain nameservers (F5-d). The calculation of feature F5-d uses 

he Levenstein distance, which is a type of edit distance and calcu- 

ates the minimum number of edit operations required to convert 

rom one string a to another string b. Allowed edit operations in- 

lude replacing one character with another, inserting a character 

r deleting a character. Given two strings a and b, the formula for 

alculating the Levenstein distance between a and b is as follows: 

lev a,b (i, j) 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

max (i, j) if min (i, j) = 0 

min 

{ 

lev a,b (i − 1 , j) + 1 

lev a,b (i, j − 1) + 1 

lev a,b (i − 1 , j − 1) + 1 ( a i � = b j ) 

otherwise. 
(2) 

here i denotes the first i characters of a and j denotes the first 

j characters of b. F5-d is calculated and averaged for each name- 

erver of the domain in turn according to the Levinstein distance. 

his is used to detect malicious domains with frequent survival up- 

ates and short lifecycles, and abnormal registration information. 

In this study, a month is used as the time window, and days 

nd periods are set as time intervals respectively. The whole 

ay is divided into the following two types of time periods: (a) 

 

0 − 4 ] , ( 4 − 24 ] ; (b) [ 0 − 12 ] , ( 12 − 24 ] . The four categories of F1- 

4 feature values under each day and each time period within one 

onth are extracted. 

We extract features x i for each domain node in the graph G , the

umber of features for each domain node is 
∑ 5 

i =1 F i ∗ M i , where F i 
enotes the feature category and M i denotes the number of sub- 

eatures under each category. Feature matrix X represents the fea- 

ures of all domain nodes in the graph and contains N rows and 

 5 
i =1 F i ∗ M i columns, the rows represent the number of domain 
7 
odes and the columns represent the number of features of each 

omain node. We embed feature matrix X into the HAN model. 

.4. HAN-based malicious domain detection model 

To effectively handle the complex statistical-and-structural in- 

ormation of domain nodes, we formulate the malicious domain 

etection problem as a node classification problem on the HAN 

odel. In the HAN model, we only focus on domain nodes. To 

etter represent our HAN-based domain detection problem, we ex- 

ract the domain graph DG containing only domain nodes from the 

eterogeneous graph G based on the set P of the three symmetric 

eta-paths mentioned above. The DG graph is only intended to ex- 

lain the node classification problem based on the domain graph 

nd is not involved in the computation of the actual HAN model. 

e take the nodes V and edges E in the heterogeneous graph G , 

he set of meta-paths P = { Host, RE, T E } and the feature matrix 

as inputs to the model HAN. Given the label information of k % 

f the domain nodes in the DG graph and input them as domain 

raining samples y L into the HAN model. The purpose of the HAN 

odel is to learn the embedding of y L and predict the labels of 

he unlabeled domain nodes in the DG graph. The overall process 

f the HAN-based malicious domain detection model is shown in 

lgorithm 1 . 

Algorithm 1: The overall process of HAN-based malicious do- 

main detection model. 

input : Heterogeneous graph G =( V, E), 

Meta-path set P = { Host, RE, T E } , 
feature matrix X , 

Domain training samples y L . 

output : HAN-based malicious domain detection model. 

for � ∈ { Host, RE, T E } do 

for i ∈ V do 

N 

�
i 

← DomainNeighborNodes (G, �) for j ∈ N 

�
i 

do 

Weight coefficient a �
i j 

: 

a �
i j 

← softmax j 
(
att node 

(
x i , x j , �

))
← 

exp ( σ ( a T � ·[ x i ‖ x j ] ) ) ∑ 

k ∈N �
i 

exp ( σ ( a T � ·[ x i ‖ x k ] ) ) 

Node-level embedding z �
i 

: z �
i 

← σ
(∑ 

j∈N φ
i 

a �
i j 

· x j 

)
Weight β�: β� ← att sem 

(
Z �Host 

, Z �RE 
, Z �TE 

)
ω � ← 

1 
| V | 

∑ 

i ∈ V q T · tanh 

(
W · Z �

i 
+ b 

)
β� ← 

exp 

(
ω �i 

)
∑ P 

i =1 exp 

(
w �i 

)
Fuse the semantic-level embedding: Z ← 

∑ P 
i =1 β�i 

· Z �i 

Train HAN by the Cross-Entropy loss function: 

L ← −∑ 

l∈ y L Y 
l ln 

(
C · Z l 

)
Return the HAN-based malicious domain detection model. 

In Algorithm 1 , HAN uses two attention mechanisms to present 

omain behavior differences: i) Node-level attention mechanism. 

AN first uses the node-level attention mechanism for each node 

o learn the importance of its related neighboring nodes based on 

ach meta-path and assigns different weight values to them. For 

xample, based on the Host meta-path, for domain nodes con- 

ected to more host nodes associated with malicious domains, 

AN gives a higher weight value to that domain than domain 

odes associated with hosts of benign domains. ii) Semantic- 

evel attention mechanism. HAN uses the semantic-level attention 

echanism to learn the weight of each meta-path. For example, if 
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Table 3 

Performance comparison of different label proportions. 

Label Proportion Precision(%) Recall(%) F-Score(%) Accuracy(%) 

90% 94.59 97.22 95.89 99.55 

70% 94.12 95.14 94.62 99.25 

50% 90.78 94.81 92.75 99.00 

30% 90.11 94.89 92.44 99.02 

10% 90.75 93.55 92.13 98.98 
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he meta-path of the Host is more meaningful for detecting mali- 

ious domains than the meta-path of RE or T E, then HAN assigns 

 higher weight value to the Host meta-path. 

Node-level attention mechanism. HAN first finds the neigh- 

oring nodes N 

�
i 

of each domain node i based on meta-path �. 

hen it uses att node 

(
x i , x j , �

)
, which is a node-level attention neu- 

al network, to calculate the importance between each neighbor- 

ng node j to node i , and finally uses the softmax function to ob-

ain the weight coefficient a �
i j 

= 

exp ( σ ( a T �·[ x i ‖ x j ] ) ) ∑ 

k ∈N �
i 

exp ( σ ( a T � ·[ x i ‖ x k ] ) ) of node 

air( i, j), where a � is the node-level attention vector. Aggregate 

he weight coefficients of all neighbor nodes of node i , and get the

omain node-level embedding z �
i 

= σ
(∑ 

j∈N φ
i 

a �
i j 

· x j 

)
. 

Semantic-level attention mechanism. For a given set of meta- 

ath P = { Host, RE, T E } , after the node-level attention mecha- 

ism, HAN gets three sets of embedding under each meta-path: 

 �Host 
, Z �RE 

, Z �TE 
. After getting the semantic-layer embedding set 

f meta-paths, HAN uses the semantic-level attention neural net- 

ork att sem 

(
Z �Host 

, Z �RE 
, Z �TE 

)
to learn the weight coefficient β�

f each meta-path. HAN first uses a Non-linear transformation to 

ransform the semantic embeddings to derive the important value 

f each meta-path: ω � = 

1 
| V | 

∑ 

i ∈ V q T · tanh 

(
W · Z �

i 
+ b 

)
, where V is 

he set of domain nodes, W is the weight matrix, b is the bias 

ector, and q is the semantic-level attention vector. Then HAN 

ets the weight coefficient by using the softmax function β� = 

exp 

(
ω �i 

)
∑ P 

i =1 exp 

(
w �i 

) . Then HAN integrates the two levels of attention to 

mbed the final malicious preference features by aggregating all 

he node-level weights as well as the semantic-level weights to 

btain the semantic-level embedding as the semantic-level embed- 

ing Z = 

∑ P 
i =1 β�i 

· Z �i 
. 

Finally, the detection model is trained by learning the final em- 

edding of the labeled nodes set y L and using the cross-entropy 

oss function to minimize the cross-entropy between the label and 

rediction value of y L : L = −sum l∈ y L .Y 
l ln 

(
C · Z l 

)
, where C denotes 

he parameters of the classifier and Z l denotes the embedding of 

he labeled nodes, and Y l denotes the label of the labeled nodes. 

e can use the trained detection model to predict the labels y U of 

nlabeled nodes of the graph. 

. Experiments 

In this section, we first evaluate the performance of HANDOM 

ith different proportions of initial training labeled samples, and 

nalyze the importance of each meta-path in the graph. Then 

e analyze the performance of HANDOM with machine learning 

ethods. Finally, we demonstrate the superiority of our method by 

omparing HANDOM with other malicious domain detection meth- 

ds. 

.1. Experimental settings 

Datasets. In this paper, we use DNS log data within the time 

indow as well as Whois data of domains to evaluate our pro- 

osed method. Our DNS log dataset comes from Qi An Xin Technol- 

gy Group Inc’s open-source dataset ( https://datacon.qianxin.com/ 

pendata ), which contains large real network traffic captured on Qi 

n Xin’s DNS servers by deploying sensors. Each record of DNS logs 

epresents the timestamp of the host accessing domains and the 

umber of times, which provides detailed information about the 

osts in terms of domain requests, and the domains and hosts in 

NS logs are encrypted. Whois data related to domains represent 

he registration information of the domain, such as the registrant, 

he registration email, registration time, etc. This information can 
8 
e obtained from the Whois domain name registration database 

nd top-level domain name zone files. 

To verify that HANDOM can detect highly stealthy malicious do- 

ains, the malicious domains in the dataset are all APT domains, 

hich are used by 9 Advanced Persistent Threat (APT) organiza- 

ions and can be considered as 9 malicious family domains. These 

omains are manually labeled by researchers based on blacklists 

nd whitelists and threat intelligence databases. Due to privacy 

rotection, these domains cannot be disclosed in this paper for il- 

ustrative purposes only. 

We set the time window of one month to extract a one-month 

f DNS logs and Whois information, and generate the heteroge- 

eous graph and nodes features according to our method. Then, 

e randomly slice the nodes in the graph, where k % of the nodes

n the graph are randomly selected as training nodes, and the re- 

aining nodes are used as test nodes to validate the performance 

f the HAN model generated by the training. 

We use the metrics as shown in the following formulas to eval- 

ate our method performance. TN indicates the number of benign 

omains correctly classified; FP indicates the number of benign 

omains classified as malicious; FN indicates the number of ma- 

icious domains classified as benign; TP indicates the number of 

alicious domains correctly classified. 

ccuracy = 

T P + T N 

T P + F P + T N + F N 

(3) 

 recision = 

T P 

T P + F P 
(4) 

ecall = 

T P 

T P + F N 

(5) 

 − Score = 

2 × P recision × Recall 

P recision + Recall 
(6) 

In addition to these conventional evaluation metrics, due to the 

xistence of data imbalance in the dataset, we additionally use 

he classification accuracy metric Matthews Correlation Coefficient 

MCC) to evaluate the classification accuracy of each method under 

mbalanced data. 

CC = 

T P × T N − F N × F P √ 

(T P + F N)(T P + F P )(T N + F N)(T N + F P ) 
(7) 

.2. Performance evaluation results of HANDOM 

We randomly select k % (where k is equal to 10, 30, 50, 70, 90)

f the domain nodes on the HAN model as initial training samples 

o train the model. HAN still needs a validation set to train the pa- 

ameters of the model, so we then select m % (where m is approx-

mately equal to 10) of the dataset as the validation set, and the 

emaining nodes in the graph as the test set to detect the model 

erformance. 

As shown in Table 3 , when training samples reach 90% in the 

raph, the metric values of HANDOM are basically above 95%, with 

recision, recall, F-Score, and accuracy of 94.59%, 97.22%, 95.89%, 

https://datacon.qianxin.com/opendata
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Table 4 

Data distribution description. 

Category Train Test 

Label Proportion Benign Malware Benign Malware TN - FP - FN - TP (Result) 

90% 11,909 809 634 36 632 - 2 - 1 - 35 

70% 10,050 660 2493 185 2480 - 13 - 3 - 182 

50% 8799 572 3744 273 3722 - 22 - 13 - 260 

30% 5019 336 7624 509 7571 - 53 - 26 - 483 

10% 2514 163 10,029 682 9964 - 65 - 44 - 638 
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Table 5 

Performances comparison of HANDOM under each meta-path. 

Meta-Path Precision(%) Recall(%) F-Score(%) Accuracy(%) 

Host 90.23 87.91 89.05 98.53 

RE 95.14 87.04 90.91 98.83 

TE 94.76 87.04 90.73 98.81 

RE + TE 94.96 89.74 92.28 98.98 

Host + RE+TE 92.20 95.24 93.69 99.13 
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nd 99.55% respectively. As the number of training samples de- 

reases, there is a small decrease in each evaluation metric value 

f HANDOM. When HANDOM is trained with only a small num- 

er of training label samples (about 10% of training samples in the 

raph), it also has a good performance with recall, F-Score and ac- 

uracy above 90% respectively. 

Table 4 shows the distribution of benign and malicious domains 

n the training and testing samples in the dataset, and the actual 

lassification results of TN, FP, FN, and TP. To highlight the differ- 

nce in the number of nodes in the training and test sets, we count 

he number of nodes in the validation sets into the training sets. 

he number of benign domains is much larger than malicious do- 

ains in both training set and test sets, and the detection range 

f malicious domains by the malicious information in the graph 

hrinks as the training samples gradually decrease. 

When there are only 163 malicious domains in the training 

ample, HANDOM can still detect the remaining 638 unknown ma- 

icious nodes in the graph. This indicates that the extracted fea- 

ures of domain nodes can extend the detection range, which can 

etect unknown domains with same malicious patterns. When the 

roportion of training samples is large enough to reach 90%, HAN- 

OM can achieve lower false positives and false negatives through 

ighter correlation between malicious domains, with only 2 false 

ositives (we call them NO_benign1 and NO_benign2) and 1 false 

egative (we call it NO_malware). 

We further analyze the reasons for these misclassifications and 

xplain why there are highly hidden malicious domains that re- 

ain undetected despite having sufficient training samples. The 

O_malware domain belongs to a small-scale APT family that con- 

ains few malicious domains, and the resources of this family 

re distributed more scattered, with a mixture of resources asso- 

iated with benign domains. The access records of NO_malware 

re more random, with no fixed time or regularity, so HANDOM 

nd other machine learning methods treat it as a benign domain. 

O_benign1 and NO_benign2 are mostly accessed by malicious 

osts, then their association relationships are biased towards ma- 

icious associations; as the host resources are concentrated in the 

ame network segments, the access time is fixed time periods, thus 

heir feature values are biased toward malicious values, so they are 

udged as malicious domains by HANDOM. Therefore, it is possible 

o circumvent HANDOM when the malicious domain circumvents 

oth the temporal-based resource associations and malicious query 

atterns. 

Considering the cost of tagging domains in practical applica- 

ions and detection efficiency, we set the training label proportion 

f 50% in an attempt to simulate the detection results in a real net- 

ork environment. We analyze the importance of each meta-path 

n the heterogeneous graph. 

From Table 5 , the results show that each HANDOM constructed 

ased on RE or T E has higher precision and relatively lower re- 

all compared to the HANDOM constructed based on meta-path 

ost . This is because there is a broader association between hosts 

nd domains, and thus are prone to misclassify some benign do- 

ains accessed by infected hosts, leading to false alarm rates. 

mail addresses are more obscure, which cannot detect more rel- 

s

9 
vant malicious domains, but they lead to fewer false positives. 

ANDOM constructed based on combined RE and T E meta-paths 

as higher metric values than these three separate meta-path, be- 

ause more malicious resources get aggregated. When these three 

eta-paths are combined, we obtain the highest performance of 

ANDOM, with precision, recall, F-Score, and accuracy of 92.20%, 

5.24%, 93.69%, and 99.13% respectively. 

.3. Comparison with machine learning methods 

To better interpret the advantages of our proposed HANDOM, 

e compare our approach with traditional machine learning meth- 

ds (SVM, RF, KNN, XGBoost). We apply the statistical features 

sed in HANDOM to machine learning methods, and select the 

umber of training samples randomly in proportion. As for the 

valuation metrics, since the domain nodes of HANDOM are in- 

erently imbalanced, with significantly more benign domains com- 

ared to malicious domains (about 90% of benign domains), any 

etric used to describe performance needs to take into account 

his imbalance. Therefore, Table 6 focuses on the selection of the 

ecall metric that can indicate the correct classification of ma- 

icious domains and the F-Score metric that serves as a recon- 

iled average of recall and precision. The detection results for each 

ethod under different proportions are presented in Table 6 and 

ig. 3 . 

From Table 6 , with different proportions of training samples, 

he detection performance of HANDOM always outperforms SVM, 

F, KNN, XGBoost. In the beginning, HANDOMs F-Score and Recall 

re much higher than other methods at the proportion of 90% of 

he training label instances (F-Score: 95.89%, Recall: 97.22%), and 

GBoost achieves the best performing method of machine learn- 

ng with F-Score: 91.30%, Recall: 88.42%. The performance of SVM, 

F, KNN and XGBoost gradually decrease as the labeled instances 

roportion decreases, with detection performance all dropping be- 

ow 80% with only 10% of training samples, while the performance 

f HANDOM remains impressive (F-Score: 92.13%, Recall: 93.55%). 

ig. 3 visualizes the results, the metric values of HANDOM are con- 

istently higher than other machine learning methods. As the pro- 

ortion of unlabeled training domains increases, the line graphs 

f HANDOM’s F-Score and Recall values have minimal downward 

rend fluctuations, while the remaining methods all have a larger 

ownward trend in performance values, which proves the robust- 

ess of HANDOM. Thus, these results verify the proficiency of 

ANDOM. 

As we can see from Fig. 4 , the four performance metrics (preci- 

ion, recall, F-Score, accuracy) of HANDOM are all higher than SVM, 
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Table 6 

Performances comparison of different machine learning methods. 

Method SVM RF KNN XGBoost HANDOM 

Proportion F-Score Recall F-Score Recall F-Score Recall F-Score Recall F-Score Recall 

90% 75.14 89.04 87.64 82.11 82.87 78.95 91.30 88.42 95.89 97.22 

70% 81.36 82.44 84.39 76.34 79.75 74.43 88.45 84.73 94.62 95.14 

50% 78.72 77.08 82.10 75.68 77.78 76.43 86.36 84.86 92.75 94.81 

30% 66.37 77.49 81.94 74.06 76.36 69.93 87.03 84.19 92.44 94.89 

10% 65.70 74.87 75.02 64.55 69.83 60.32 79.22 72.09 92.13 93.55 

Fig. 3. Comparison of F-Score and Recall values of different methods. 

Fig. 4. Performance evaluation on different methods. 
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F, KNN, and XGBoost method, when the proportion of training 

amples is 50%. This gives a reference to the detection effective- 

ess of HANDOM and these machine learning methods in practi- 

al applications. Further analysis reveals that the number of benign 

omains is much more than malicious domains when the training 

ample is only 50%, and HANDOM’s precision and recall are much 

igher than other detection methods, which proves that HANDOM 
10 
s better at handling imbalanced datasets compared to other meth- 

ds. 

From Fig. 5 , HANDOM shows the best MCC rates among all de- 

ection methods under different proportions of training samples, 

F and XGBoost have the second highest MCC effect, and SVM has 

he worst effect. This proves that HANDOM can handle the data 

mbalance problem very well. While the machine learning-based 
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Fig. 5. MCC Rate of different methods. 
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Table 7 

Distribution of nodes of the graph constructed by each method. 

Method Domain Nodes Benign Nodes Malicious Nodes 

Dataset 18,765 17,920 845 

IP-graph 2445 2000 245 

HinDom 15,070 14,530 540 

HANDOM 13,388 12,543 845 
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etection methods are unable to solve the data imbalance prob- 

em due to their settings, which leads to their slightly worse MCC 

ates. 

In general, our proposed HANDOM outperforms all the above 

achine learning methods in malicious domain detection. The ad- 

antages of HANDOM can be attributed to the following reasons. 

ANDOM considers both global correlation relations between do- 

ains and local node features. It also relies on resource correla- 

ion between domains compared to traditional machine learning 

ethods that use only statistical features, the correlations based 

n graph structure make it impossible to avoid detection between 

alicious domains with associations; HANDOM based on graph 

tructure can solve the data imbalance problem well and detect 

nknown nodes in a graph with high performance with only a 

mall number of labeled samples, thus can be better applied to 

etection in real network environments. 

.4. Comparison with other malicious domain detection methods 

To verify the superiority of our method, we enlarge the com- 

arison scope to compare HANDOM with other malicious domain 

etection methods Khalil et al. (2016) ; Sun et al. (2019) . Issa Khalil

t al. Khalil et al. (2016) proposes an IP-graph method that con- 

tructs a domain graph based on the association between domains 

nd their resolved IP addresses, and then calculates the association 

eight between each unknown malicious domain and the given 

alicious domains, which is determined by the IP address and IP’s 

S number, and finally obtains the malicious score for each un- 

nown malicious domain. Sun et al. Sun et al. (2019) proposes a 

inDom method that proposes six different meta-paths based on 

he association between domains, and uses transduction classifica- 

ion to detect unknown domains in the graph. HANDOM and the 

wo compared methods Khalil et al. (2016) ; Sun et al. (2019) are 

oth graph-based detection methods, which first construct graph 

odels according to association rules, and then apply inference al- 

orithms on the graph for malicious domain node detection. The 

ifference is that HANDOM not only uses the graph model, but 

lso extracts five types of features for domain nodes based on it, 

hich greatly enriches the information of each domain node in the 

raph. However, these two types of methods Khalil et al. (2016) ; 
11
un et al. (2019) do not perform feature extraction on the nodes in 

he graph. 

Since the source codes and the datasets are not provided for 

he above two types of methods, we reproduce them using our 

atasets according to the information provided in the paper and 

ompare them with our method. We construct each domain graph 

ccording to the graph composition rules of each method, and the 

istribution of nodes in each graph is shown in Table 7 . As can

e seen from Table 7 , the total number of domains in the initial

xperiment dataset is 18765, of which 17,920 are benign domains 

nd 845 are malicious domains. Compared with the domain graphs 

onstructed by the other two methods, HANDOM’s heterogeneous 

raph covers all the malicious domains and removes the most be- 

ign domain nodes. This indicates that HANDOM’s graph compo- 

ition rules have better malicious domain coverage, as well as the 

bility to obtain more streamlined computational efficiency. 

We randomly select k% of domain nodes in the graph as the 

raining samples to train these methods, and the experimental re- 

ults are shown in Table 8 and Fig. 3 . In conjunction with the 

bove analysis, Table 8 selects three metrics, F-Score, recall, and 

CC to evaluate the performance of these three methods together. 

he F-Score, recall, and MCC values of HANDOM at different ratios 

re higher than IP-Graph and HinDom. For example, when the la- 

el proportion is 90%, HANDOM obtains F-Score, recall, and MCC 

alues of 95.89%, 97.22%, and 95.66%, respectively, which are much 

igher than the results of the two detection methods. 

As shown in Fig. 3 , the F-Scores of both IP-graph and Hin- 

om are lower than HANDOM and machine learning methods us- 

ng the statistical features of HANDOM. Recall values of HinDom 

re lower than machine learning methods, and recall values of IP- 

raph maintain good performance, but when the training samples 

re small, the recall value of IP-graph is lower than machine learn- 
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Table 8 

Performance comparison of different malicious detection methods. 

Method IP-graph HinDom HANDOM 

Proportion F-Score Recall MCC F-Score Recall MCC F-Score Recall MCC 

90% 26.44 92.00 36.38 55.06 39.26 61.07 95.89 97.22 95.66 

70% 49.06 87.84 52.52 46.51 33.33 52.13 94.62 95.14 95.51 

50% 59.09 84.55 59.25 23.13 36.85 21.93 92.75 94.81 93.24 

30% 66.06 84.30 64.62 11.66 63.89 11.15 92.44 94.89 91.95 

10% 56.41 59.73 51.86 7.86 54.07 4.82 92.13 93.55 91.60 

Fig. 6. Confusion matrix of different methods under the proportion of 10%. 

i

o

t

t

c

5

o

i

a

o

p

s

f

s

t

t

i

t

m

c

h

m

c

b

l

d

d

n

n

l

r

a

a

d

t

t

s

s

r

t

e

f

d

o

d

o

t

r

t

H

t

l

7

t

t

a

f

t

d

t

v

t

n

ng methods and HANDOM. These results demonstrate the ability 

f our selected statistical features to mine malicious behavior pat- 

erns, as it can detect more highly concealed malicious domains. 

Fig. 4 proves that our HANDOM takes advantage of the two de- 

ection methods, on the whole with respect to the precision, re- 

all, F-Score, and accuracy, when the training label proportion of 

0%. And it can be seen that the performance of these two meth- 

ds is slightly lower than the other four machine learning methods 

n each metric, which also proves that our selected features have 

 higher ability to detect malicious domains than these two meth- 

ds. 

Fig. 6 shows the confusion matrixs for each method when the 

roportion of training samples is 10%. These confusion matrix vi- 

ualize the misclassification cases of benign and malicious domains 

or each method. In the extreme case (when the training sample is 

mall), HANDOM has the least misclassification cases among the 

hree methods, which indicates that HANDOM has a better ability 

o reduce false positives and positive positives even in the case of 

nsufficient label data. 

We analyze the reasons for the poor experimental results of 

hese two types of methods and the excellent performance of our 

ethod and why HANDOM can detect more highly hidden mali- 

ious domains. i) The graph constructed by the IP-graph method 

as a low node coverage, and can only associate 13% of the do- 

ain nodes in the dataset. When the training samples are suffi- 

ient, IP-graph can detect more malicious domains, but the num- 

er of misreported malicious domains is higher, which leads to a 

ow F-Score value. The ratio of the number of benign and malicious 

omains among the nodes associated with IP-graph is not much 

ifferent, but the MCC value is low, which indicates that it can- 

ot handle imbalanced data. ii) HinDom has the highest domain 

ode coverage but captures fewer malicious domain nodes, which 

eads to an unbalanced distribution of domain nodes in the graph, 

esulting in extremely low MCC values. HinDom’s graph has more 

ssociations of benign domain nodes and fewer malicious associ- 

tions exist, and HinDom relies only on the correlation between 
n

12 
omains, resulting in the inability to effectively capture more po- 

entially highly hidden malicious domains in the graph which leads 

o its lowest performance. 

Both above types of detection methods use association relation- 

hips between domains for detection. Unlikely, HANDOM uses both 

tructural association information between domains and incorpo- 

ates statistical features. HANDOM depends not only on the struc- 

ural information of the graph but also on the statistical features 

xtracted from malicious behaviors to enhance the malicious in- 

ormation of domains. As seen in Fig.reffig:random-ml-mask5, the 

etection performance of the machine learning methods that rely 

nly on our selected statistical features are higher than these two 

etection methods that rely on graph structures. And the rules 

f constructing the domain graph of HANDOM enable it to cap- 

ure more information about malicious domains and remove other 

edundant nodes to reduce resource computation. The combina- 

ion of graph structure information and node statistical features of 

ANDOM not only expands the detection range but also improves 

he detection accuracy, thus achieving significant detection of ma- 

icious domains. 

. Limitations and future work 

HANDOM has a limitation that it does not provide real-time de- 

ection. Unlike DGA domains, which are short effective and need 

o be blocked as soon as possible. HANDOM mainly targets long- 

cting malicious domains such as APT domains, which are long ef- 

ective and highly covert. HANDOM needs a suitable time window 

o collect domain behavior data, to achieve the balance between 

etection efficiency and detection performance. 

We provide an analysis of how to circumvent HANDOM. Two 

ypes of conditions need to be satisfied for an attacker to circum- 

ent HANDOM: there is no malicious association between the at- 

acker’s malicious domains, which means malicious resources can- 

ot be reused; the behavioral habits between malicious domains 

eed to be disguised as characteristics of benign domains. Both 
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f these involve cost issues, and thus circumventing HANDOM re- 

uires a greater loss of resources for the attacker. 

In the future work, based on the malicious domains identified 

y HANDOM, we can go further to analyze the size of the mali- 

ious family to which each malicious domain belongs, as well as 

he attributes and scale of malicious activities, to discover the at- 

acks faster and achieve a comprehensive blocking of malicious ac- 

ivities at the early stage of their development. 

. Conclusion 

In this paper, we propose an effective malicious domain de- 

ection method called HANDOM. More specifically, HANDOM first 

onstructs a heterogeneous graph to represent resource sharing re- 

ationships between domains, and then extracts time-series fea- 

ures based on behavioral patterns for each domain in the graph. 

o better combine statistical features and structural information, 

ANDOM uses the HAN model to handle both types of informa- 

ion. HAN uses the node-level and semantic-level to learn the ma- 

icious embedding of each domain and achieve the effective clas- 

ification of domain nodes. We test HANDOM in the real network 

ata and experimental results show that our proposed HANDOM 

as superior performance. In addition, comparative results on mul- 

iple scopes show that HANDOM outperforms traditional machine 

earning models as well as the existing detection methods, and can 

chieve effective detection of highly hidden malicious domains. 
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