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ABSTRACT
Large-scale Multivariate Time Series (MTS) widely exist in various
real-world systems, imposing significant demands on model effi-
ciency. A recent work, STID, addressed the high complexity issue
of popular Spatial-Temporal Graph Neural Networks (STGNNs).
Despite its success, when applied to large-scale MTS data, the num-
ber of parameters of STID for modeling spatial dependencies in-
creases substantially, leading to over-parameterization issues and
suboptimal performance. These observations motivate us to explore
new approaches for modeling spatial dependencies in a parameter-
friendly manner. In this paper, we argue that the spatial properties
of variables are essentially the superposition of multiple cluster cen-
ters. Accordingly, we propose a Cluster-Aware Network (CANet),
which effectively captures spatial dependencies by mining the im-
plicit cluster centers of variables. CANet solely optimizes the cluster
centers instead of the spatial information of all nodes, thereby signif-
icantly reducing the parameter amount. Extensive experiments on
two large-scale datasets validate our motivation and demonstrate
the superiority of CANet.
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Figure 1: Traffic data (speed) over 24 hours of 20 sensors in
the METR-LA dataset, which shares similar patterns.

1 INTRODUCTION
Multivariate time series (MTS) widely exist in the real world, creat-
ing massive demand for MTS forecasting techniques [16]. Spatial-
Temporal Graph Neural Networks (STGNNs) [2, 7, 8, 14, 15, 20]
have recently achieved State-Of-The-Art (SOTA) performance in
MTS forecasting. Researchers adeptly model spatial dependencies
between variables based on graph structure and graph convolution,
significantly improving prediction accuracy. Despite their success,
STGNNs usually suffer from efficiency issues and fail to handle
large-scale MTS data. Their complexity increases quadratically with
the number of variables, which is unacceptable for tens of thousands
of variables. To solve the efficiency issues, a recent work, STID [12],
identifies the indistinguishability of samples in both spatial and
temporal dimensions as a critical bottleneck and introduces spatial
identities in the spatial dimension. However, the number of spatial
identities is equal to the variables, and they are optimized without
specific constraints, leading to a sharp parameter increase and opti-
mization issues in large-scale datasets simultaneously. Specifically,
the numbers of spatial identities in large-scale datasets are hun-
dreds more times than in commonly-used datasets [8, 20] and may
easily cause over-parameterization issues.

This observation motivates us to explore new approaches for
modeling spatial dependencies in a parameter-friendly manner.
We argue that spatial identities of variables are essentially the
superposition of multiple cluster centers. Accordingly, we can solely
optimize limited cluster centers, notably reducing parameters for
modeling spatial dependencies.
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Figure 2: Architecture of our proposed framework. Cuboids in the cluster-center bank represent embeddings of cluster centers,
and circles with different colors represent different attention scores.

To illustrate our motivation, we take the intersections in traf-
fic systems as an example: intersections located in similar areas
or playing similar roles usually have close traffic distribution. As
shown in Figure 1, different time series reveal similar patterns over
time, which indicates implicit clusters exist between variables, and
the number of them is far less than the number of variables. There-
fore, we can obtain variables’ spatial identities by exploiting limited
cluster centers, resulting in significant alleviation of parameters
and optimization issues simultaneously.

In this paper, we propose a Cluster-Aware Network, named
CANet, to generate spatial identities in a parameter-friendly man-
ner, which includes a core component, cluster-aware(CA) module.
CA module consists of a cluster-center bank to store the cluster
centers’ embeddings and an attention-based method to obtain the
distribution of cluster centers for variables. To elaborate, firstly, the
CA module uses time series embeddings to query all the cluster
centers’ embeddings and implements the weighted summation of
them according to the results of queries. Compared with STGNNs
and STID, exploiting hidden clusters among variables for modeling
spatial dependencies reduces parameters significantly. Extensive
experiment results show CANet achieves the best performance on
datasets. Ablation study results further prove the effectiveness of
the CA in modeling spatial dependencies, and visualization results
suggest that our framework captures hidden clusters successfully.

2 PROBLEM DEFINITION
Multivariate Time Series Forecasting. Multivariate time series
forecasting aims to simultaneously predict all the variables’ future
time series. We assume we receive all the time series as 𝑋 ∈ 𝑅𝑁×𝑇

and predict their future data, where 𝑁 is the number of variables,
and 𝑇 is the length of the time series. We define the input time
series of variable 𝑖 from past 𝑃 time steps as 𝑋 𝑖

𝑡−𝑃 :𝑡−1 ∈ 𝑅𝑃 and the
𝐹 future time series as 𝑌 𝑖

𝑡 :𝑡+𝐹−1 ∈ 𝑅𝐹 respectively. We denote our
prediction for variable 𝑖 as 𝑌 𝑖

𝑡 :𝑡+𝐹−1 ∈ 𝑅𝐹 .

3 MODEL ARCHITECTURE
3.1 Overview
Figure 2 shows that our model consists of a time series embedding
layer, a cluster-aware module, and an MLP-based decoder. Firstly,
the time series embedding layer maps time series to latent space,
obtaining time series embeddings. Then, we use these embeddings

as queries to implement weighted summation of cluster centers
based on the attention mechanism [1], generating spatial identities
of variables. Finally, time series embeddings and spatial identities
are concatenated and decoded by the decoder to make a prediction.

3.2 Time Series Embedding layer
We use FC(·) to represent a fully connected (FC) layer for simplicity.
The time series embedding layer consists of a FC layer to encode
time series, mapping them from 𝑋𝑡−𝑃 :𝑡−1 ∈ 𝑅𝑁×𝑃 to 𝐻𝑡 ∈ 𝑅𝑁×𝐷 :

𝐻𝑡 = 𝐹𝐶𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 (𝑋𝑡−𝑃 :𝑡 ), (1)

where 𝐷 is the hidden dimension of the embedding layer.

3.3 Cluster-aware Module
The cluster-aware module mainly consists of a cluster-center bank
Θ ∈ 𝑅𝑀×𝐸 , where 𝑀 is the number of cluster centers, and 𝐸 is
the dimension of a cluster center’s embedding. It implements time
series clustering based on classical attention mechanism [1].

Classical attention mechanism requires three vectors 𝑄 , 𝐾 and
𝑉 , which respectively correspond to 𝑄𝑡 , Θ, Θ in this work. Θ is
initialized randomly and 𝑄𝑡 ∈ 𝑅𝑁×𝐸 is projected from 𝐻𝑡 :

𝑄𝑡 = 𝑄𝑢𝑒𝑟𝑦𝑃𝑟𝑜 𝑗𝑒𝑐𝑡𝑖𝑜𝑛(𝐻𝑡 ) = 𝐹𝐶𝑝𝑟𝑜 𝑗 (𝐻𝑡 ) . (2)

For numerical stability, we normalize the embeddings stored in
the cluster-center bank by its 𝐿2 norm:

Θ̂ =
Θ

∥Θ∥2
. (3)

Then, time series embeddings are used to query all the cluster
centers and obtain weights measuring the relative distance between
variables and them:

𝑊𝑡 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 ((𝑄𝑡 )𝑇 Θ̂), (4)

where 𝑊𝑡 ∈ 𝑅𝑁×𝑀 , reflecting the relative distance between N
variables and𝑀 cluster centers.

Finally, to generate spatial identities of variables, all the cluster
centers are superposed according to the calculated weight:

𝑆𝑡 =𝑊𝑡 · Θ̂, (5)

where 𝑆𝑡 ∈ 𝑅𝑁×𝐸 , representing the spatial identities of 𝑁 variables.
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3.4 Time Series Decoder
Before making a prediction, our model attaches time series embed-
dings 𝐻𝑡 and spatial identities 𝑆𝑡 together:

𝑍 1
𝑡 = 𝐻𝑡 | |𝑆𝑡 , (6)

where 𝑍 1
𝑡 ∈ 𝑅𝑁×(𝐷+𝐸 ) , representing spatial-temporal features.

Then, we use the time series decoder consisting of 𝐿 fully con-
nected layers to implement a prediction. The first 𝐿 − 1 layers fur-
ther transform the spatial-temporal features 𝑍 1

𝑡 and the 𝑙 − 𝑡ℎ (𝑙 =
1, 2, 3, ..., 𝐿 − 1) layer’s output 𝑍 𝑙+1𝑡 can be denoted as:

(𝑍𝑡 )𝑙+1 = 𝐹𝐶𝑙2 (𝜎 (𝐹𝐶
𝑙
1 ((𝑍𝑡 )

𝑙 ))) + (𝑍𝑡 )𝑙 . (7)

Finally, 𝐿 − 𝑡ℎ layer conducts a prediction based on (𝑍𝑡 )𝐿 by:

𝑌𝑡 :𝑡+𝐹−1 = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟𝐿 ((𝑍𝑡 )𝐿) = 𝐹𝐶 ((𝑍𝑡 )𝐿), (8)

where 𝑍𝐿
𝑡 ∈ 𝑅𝐷+𝐸 and 𝑌𝑡 :𝑡+𝐹 ∈ 𝑅𝑁×𝐹 is the prediction.

We use Mean Average Error (MAE) to measure the deviation
between prediction and ground truth:

L𝑀𝐴𝐸 =
1
𝑁𝐹

𝑁∑︁
𝑖=1

𝑡+𝐹−1∑︁
𝑗=𝑡

|𝑌 𝑖𝑗 − 𝑌
𝑖
𝑗 |, (9)

where 𝑌 𝑖
𝑗
and 𝑌 𝑖

𝑗
are variable 𝑖’s prediction and ground truth in

time step 𝑗 , respectively.
Furthermore, to ensure the capacity of the cluster-aware module

for differentiating cluster centers, inspired by [4, 11], we introduce
two constraints, consistency and contrast loss:

L𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 =

𝑁∑︁
𝑖=1

| |𝑄𝑖
𝑡 − Θ[𝑎]𝑖 | |2, (10)

where 𝑄𝑖
𝑡 ∈ 𝑅𝐸 and Θ[𝑎]𝑖 ∈ 𝑅𝐸 respectively represent the query

from variable 𝑖 and the closest cluster center for variable 𝑖 .

L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =

𝑁∑︁
𝑖=1

𝑚𝑎𝑥 ( | |𝑄𝑖
𝑡 −Θ[𝑎]𝑖 | |2 − ||𝑄𝑖

𝑡 −Θ[𝑏]𝑖 | |2 +𝜆, 0), (11)

where Θ[𝑏]𝑖 ∈ 𝑅𝐸 represents the second closest cluster-center for
variable 𝑖 and 𝜆 ∈ 𝑅 denotes the margin between positive (the
closest cluster center) and negative (the rest) pairs.

To summarize, consistency loss aims to avoid excessive disper-
sion and simultaneously preserve a certain level of discrimination
between cluster centers. And contrary loss seeks to maximize the
discrimination between variables as much as possible.

Therefore, our loss function is:

L = L𝑀𝐴𝐸 + L𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 + L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 (12)

We use Adam [5] to optimize all fully connected layers and
the cluster-center bank by minimizing 𝐿 via the backpropagation
algorithm and stochastic gradient descent.

4 EXPERIMENTS
4.1 Experimental Setup
Datasets. We conduct experiments on two datasets collected from
California’s highway network [10]. They are sampled from the
same sensors, recording traffic speed and flow, respectively. For
simplicity, we call them SPEED and FLOW. And we list their vital
statistics in Table 1.

Table 1: Statistics of datasets

Dataset Variates Length Sample Rate Time Span

SPEED 11160 105120 5 min 1 year
FLOW 11160 105120 5 min 1 year

Figure 3: Methods-Parameters.

Baselines. Our baseline consists of HI [3], MLP, STID [12], D-
Linear [18], STGCN [17] and Pyraformer [9]. Although there are
many novel and powerful SOTA methods, such as crossformer [19],
D2STGNN [14], and STEP [13], they suffer from high computational
resource consumption and fail to work on SPEED and FLOW
datasets. Thus we do not choose them as the baseline. Besides,
the work initially presented these datasets is also excluded for not
evaluating performance according to commonly-used evaluation
metrics and high computational resource consumption [10].
Metrics. We evaluate the performance of methods on Mean Ab-
solute Error (MAE), Root Mean Squared Error (RMSE), and Mean
Absolute Percentage Error (MAPE), which are commonly used in
the field of MTS forecasting.
Implementation. We conducted experiments with Pytorch 1.10.0
on an NVIDIA RTX 3090 GPU. Due to the different complexity of
models, we set different batch_sizes and learning_rates on different
baselines. In our model, the number of cluster centers is𝑀 , and the
model’s input and output lengths are 𝑃 and 𝐹 .

4.2 Performance Study
We divide original datasets into training sets, test sets, and valida-
tion sets according to the ratio of 7:1:2. Our task is to predict the
future time series with a length of 12. We compared the perfor-
mance of different methods on the 1st, 3rd, 6th, 9th, 12th time
steps, and average (Avg.) performance on 1-12 time steps. The best
results are highlighted in bold, and the suboptimal results are un-
derlined. As shown in Table 2, our approach performs best on all
datasets without complex spatial dependencies modeling module.
It achieves performance improvement of at least 3% or 7% than the
suboptimal results on the datasets, which is significant improve-
ment in the MTS forecasting area. These results demonstrate the
validity of our model.

4.3 Ablation Study
In this subsection, we conduct an ablation study on both datasets to
verify the effectiveness of the cluster-aware module by comparing
the results before and after removing the cluster-aware module. As
shown in Table 3, when removing it, the performance decreases
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Table 2: Multivariate time series forecasting on the SPEED and FLOW datasets.
Dataset SPEED FLOW

Method Metric @1 @3 @6 @9 @12 Avg. @1 @3 @6 @9 @12 Avg.

HI
MAE 2.84 2.84 2.84 2.84 2.84 2.84 36.59 36.59 36.59 36.59 36.59 36.59
RMSE 6.28 6.28 6.28 6.28 6.28 6.28 56.99 56.99 56.99 56.99 56.99 56.99
MAPE 6.12% 6.12% 6.12% 6.12% 6.12% 6.12% 32.51% 32.51% 32.51% 32.51% 32.51% 32.51%

MLP
MAE 0.98 1.53 2.01 2.37 2.67 1.98 15.61 18.64 22.44 26.30 30.61 23.12
RMSE 1.88 3.23 4.48 5.33 5.96 4.36 25.66 30.73 36.56 42.15 48.43 37.36
MAPE 1.85% 3.10% 4.30% 5.28% 6.15% 4.31% 14.58% 16.89% 19.77% 23.47% 28.15% 20.78%

D-Linear
MAE 1.02 1.60 2.09 2.45 2.76 2.07 15.53 18.90 23.05 27.45 32.29 23.88
RMSE 1.94 3.32 4.56 5.41 6.04 4.46 25.96 31.84 38.79 45.65 52.66 39.76
MAPE 1.92% 3.21% 4.45% 5.43% 6.30% 4.45% 14.13% 16.47% 20.82% 25.50% 34.62% 22.86%

STGCN
MAE 1.13 1.54 1.87 2.08 2.25 1.83 21.15 21.74 22.39 23.51 24.71 22.74
RMSE 2.23 3.18 4.03 4.52 4.89 3.91 32.88 34.29 35.57 37.36 39.28 36.01
MAPE 2.31% 3.20% 4.07% 4.65% 5.10% 4.00% 19.92% 20.53% 21.51% 22.93% 24.58% 21.94%

Pyraformer
MAE 2.68 2.70 2.72 2.74 2.77 2.72 28.38 28.49 28.63 28.93 29.12 28.73
RMSE 5.34 5.37 5.42 5.47 5.52 5.43 51.31 51.62 51.86 52.31 52.51 51.97
MAPE 6.03% 6.07% 6.13% 6.19% 6.26% 6.14% 31.28% 31.27% 31.48% 31.59% 31.64% 31.52%

STID
MAE 0.97 1.47 1.87 2.11 2.31 1.82 14.39 15.87 17.38 18.67 19.96 17.45
RMSE 1.82 3.03 4.03 4.61 5.02 3.88 23.95s 26.64 29.13 31.14 33.09 29.15
MAPE 1.83% 3.01% 4.11% 4.85% 5.42% 4.02% 13.53% 14.91% 16.62% 18.20% 19.88% 16.81%

CANet
MAE 0.93 1.40 1.75 1.96 2.13 1.70 14.17 15.51 16.84 17.98 19.22 16.92
RMSE 1.78 2.92 3.83 4.33 4.67 3.67 23.77 26.30 28.48 30.20 32.00 28.52
MAPE 1.75% 2.85% 3.83% 4.45% 4.90% 3.72% 13.19% 14.49% 15.99% 17.36% 18.75% 16.12%

Table 3: Ablation Study Results.
Dataset SPEED FLOW

Method Metric @6 @12 Avg. @6 @12 Avg.

CA-removed
MAE 1.95 2.56 1.93 18.95 23.64 19.26
RMSE 4.29 5.02 4.18 31.87 39.02 32.21
MAPE 4.26% 6.02% 4.25% 18.06% 24.34% 19.15%

CANet
MAE 1.75 2.13 1.70 16.84 19.22 16.92
RMSE 3.83 4.67 3.67 28.48 32.00 28.52
MAPE 3.83% 4.90% 3.72% 15.99% 18.75% 16.12%

by 14% or 20%, which indicates that using our module to generate
spatial identities of variables is of great importance to prediction.

4.4 Parameters Study
Figure 3 shows the parameters of several methods [2, 7, 12, 17]
when the number of variables is 11160, and indicates that CANet
implements predictions in a parameter-friendly manner.

4.5 Visualization
This part visually explains the capacity to capture clusters and
model spatial dependencies of the cluster-aware module. For bet-
ter visualization, we applied a dimensionality reduction algorithm,
MDS (Multiple Dimensional Scaling) [6], on spatial identities and
cluster centers. We use a model trained on the SPEED dataset and
obtain spatial identities by its cluster-aware module. The visualiza-
tion result is shown in Figure 4.

Figure 4 shows that the spatial identities of variables exhibit a
cluster distribution around several cluster centers. The phenome-
non is consistent with our proposed example in the introduction:
intersections in a traffic system have several implicit clusters, and
clusters are far less than variables. Besides, the cluster centers (red
dots) and spatial identities (green dots) closely correlate in the space,
proving our cluster-aware module’s effectiveness in capturing clus-
ters and modeling spatial dependencies.

Figure 4: Visualization. Red dots and green dots denote di-
mensionally reduced cluster centers and spatial identities.
5 CONCLUSIONS
In this paper, we explore new approaches for modeling spatial de-
pendencies in large-scale MTS data. Based on observations of traffic
systems, we identify the spatial identities of variables are the super-
position of multiple cluster centers. The perspective motivates us to
propose a cluster-aware network, named CANet, to maintain and
optimize a limited number of cluster centers that represent the im-
plicit clusters of numerous variables. CANet implements weighted
summation of cluster centers based on the cluster-aware module,
which uses fewer parameters to achieve the best performance in
large-scale MTS data. This result shows that we can model spa-
tial dependencies in a parameter-friendly manner by mining the
implicit clusters of variables.
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