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ABSTRACT
Multivariate Time Series (MTS) forecasting plays a vital role in a

wide range of applications. Recently, Spatial-Temporal Graph Neu-

ral Networks (STGNNs) have become increasingly popular MTS

forecastingmethods due to their state-of-the-art performance. How-

ever, recent works are becoming more sophisticated with limited

performance improvements. This phenomenon motivates us to ex-

plore the critical factors of MTS forecasting and design a model

that is as powerful as STGNNs, but more concise and efficient. In

this paper, we identify the indistinguishability of samples in both

spatial and temporal dimensions as a key bottleneck, and propose

a simple yet effective baseline for MTS forecasting by attaching

Spatial and Temporal IDentity information (STID), which achieves

the best performance and efficiency simultaneously based on sim-

ple Multi-Layer Perceptrons (MLPs). These results suggest that we

can design efficient and effective models as long as they solve the

indistinguishability of samples, without being limited to STGNNs.
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1 INTRODUCTION
Multivariate time series (MTS) data is a typical spatial-temporal

data, which contains multiple interrelated time series. Accurate and

efficient MTS forecasting plays a vital role in many applications,
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(a) Traffic flow time series on sensor 29 and 301 in PEMS04 dataset.

(b) Indistinguishable samples in spatial dimension under .W1

(c) Indistinguishable samples in temporal dimension from sensor 301.
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Figure 1: Examples of traffic flowMTS data and the indistin-
guishable samples in the spatial and temporal dimension.

from transportation and energy to economics [5, 10, 19], and has

remained an enduring research topic in both academia and industry.

Previous studies on MTS forecasting usually fall into two cat-

egories, i.e., statistical methods and deep learning-based meth-

ods. The former assume that there exist linear correlations among

variables (i.e., time series). Regarding the latter, early works [9]

utilize Convolution Neural Networks (CNN) to capture the cor-

relations among variables, yet ignore their non-Euclidean pair-

wise dependencies. Recently, Spatial-Temporal Graph Neural Net-

works (STGNNs) [14, 15, 18] have attracted increasing attention for

their state-of-the-art performance. STGNNs combine graph convo-

lutional networks (GCN [8]) and sequential models [3, 21]. The for-

mer deals with non-Euclidean dependencies among variables, and

the latter captures temporal patterns. Many researchers have made

persistent efforts to design powerful graph convolutions [2, 20, 22],

or to reduce reliance on the pre-defined graph structure [11, 13, 17].

Despite significant progress, recent STGNN-based methods are be-

coming sophisticated with limited improvements, which motivates

us to think: can we refine the critical factors of MTS forecasting, and
design a model that is as powerful as STGNNs but more concise and
efficient? To answer the above question, in this paper, we first iden-

tify the indistinguishability of samples in both spatial and temporal

dimensions as a key bottleneck. Subsequently, we design a simple

yet effective baseline model to alleviate this bottleneck.
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To intuitively illustrate our observation, we take the MTS data

in Figure 1 as an example, where each time series is derived from a

traffic flow sensor. First of all, as shown in Figure 1(a), the samples

are generated by a sliding window with a size of 𝑃 + 𝐹 , where 𝑃 and

𝐹 denote the length of historical data and future data, respectively.

For example,𝑊1,𝑊2, and𝑊3 are three windows at different time.

Furthermore, considering that different variables and periods have

different patterns, we can expect to generate many samples with

similar historical data but different future data. For example, Figure

1(b) shows samples from different variables (i.e., sensors 29 and 301)
under window𝑊1, where the historical data (left) are very similar

and the future data (right) are different. Similarly, samples from

sensor 301 under different periods (i.e., windows𝑊2 and𝑊3) are

shown in Figure 1(c). Simple regression models (e.g., MLPs) cannot

predict their different future data based on their similar historical

data, that is, they can not distinguish these samples. Therefore, we

refer to the characteristics behind the two kinds of sample pairs in

Figures 1(b) and 1(c) as the indistinguishability of samples in the

spatial and temporal dimensions. In addition, a very recent work [5]

also reveals that the critical factor for the success of STGNNs is

that GCN relieves spatial indistinguishability.

To alleviate the above bottleneck, we design a simple yet effective

baseline model for MTS forecasting, named STID, based on an

intuitive idea of attaching spatial-temporal identity information.

As shown in Figure 2, STID utilizes a spatial embedding matrix

E ∈ R𝑁×𝐷
, and two temporal embedding matrices TTiD ∈ R𝑁𝑑×𝐷

and TDiW ∈ R𝑁𝑤×𝐷
, to indicate the spatial and temporal identities.

𝑁 is the number of variables (i.e., time series), 𝑁𝑑 is the number of

time slots in a day (determined by the sampling frequency), 𝑁𝑤 = 7

is the number of days in a week, and 𝐷 is the hidden dimension.

Subsequently, STID encodes information based on simple MLP

layers and makes predictions through a regression layer. STID

has a more concise architecture compared with the STGNN-based

methods, and extensive experiments have shown that STID is more

powerful than STGNN-based methods and has significant efficiency

advantages. These results suggest that we can design more efficient

and effective models by solving the indistinguishability of samples,

without being limited to STGNNs.

2 PRELIMINARIES
Definition 1. Multivariate Time Series Forecasting. Multi-

variate time series can be denoted as a tensor X ∈ R𝑇×𝑁 , where 𝑇
is the number of time slots and 𝑁 is the number of variables. Given
historical signals X ∈ R𝑃×𝑁 from the past 𝑃 time slots, multivariate
time series forecasting aims to predict the values Y ∈ R𝐹×𝑁 of the
𝐹 nearest future time slots. We additionally denote the sample from
time series 𝑖 at time step 𝑡 as X𝑖

𝑡−𝑃 :𝑡 ∈ R
𝑃 and Y𝑖

𝑡 :𝑡+𝐹 ∈ R𝐹 .

Definition 2. Spatial and Temporal Identities. Assuming 𝑁
time series and 𝑁𝑑 time slots in a day and 𝑁𝑤 = 7 days in a week,
the spatial and temporal identities are preserved in three embedding
matrices, i.e., E ∈ R𝑁×𝐷 , TTiD ∈ R𝑁𝑑×𝐷 , and TDiW ∈ R𝑁𝑤×𝐷 ,
which are trainable parameters, and 𝐷 is the hidden dimension.

3 MODEL ARCHITECTURE
As shown in Figure 2, STID consists of an embedding layer, multiple

MLP layers, and a regression layer. For simplicity, we denote FC(·)

Table 1: Statistics of datasets.
Dataset Length # Variants Sample Rate Time Span

PEMS04 16992 307 5mins 2 months

PEMS07 28224 883 5mins 3 months

PEMS08 17856 170 5mins 2 months

PEMS-BAY 52116 325 5mins 6 months

Electricity 2208 336 60mins 3 months

as a fully connected layer. The embedding layer transforms raw

historical time series X𝑖
𝑡−𝑃 :𝑡 ∈ R

𝑃
into latent space H𝑖

𝑡 ∈ R𝐷 by:

H𝑖
𝑡 = FC

embedding
(X𝑖

𝑡−𝑃 :𝑡 ), (1)

where 𝐷 is the hidden dimension. Then, STID attaches spatial and

temporal identities E𝑖 , TTiD, and TDiW by:

Z𝑖𝑡 = H𝑖
𝑡 ∥ E𝑖 ∥ TTiD𝑡 ∥ TDiW𝑡 , (2)

where Z𝑖𝑡 ∈ R4𝐷 denotes the hidden representation with spatial

and temporal identities. Kindly note that the spatial and temporal

identities are randomly initialized trainable parameters, and the

temporal identities are shared among time slots for the same time

in a day and the same day in a week. Subsequently, we utilize 𝐿

layers of MLP with a residual connection to encode information.

The 𝑙-th MLP layer can be denoted as:

(Z𝑖𝑡 )𝑙+1 = FC
𝑙
2
(𝜎 (FC𝑙

1
((Z𝑖𝑡 )𝑙 ))) + (Z𝑖𝑡 )𝑙 . (3)

Finally, the regression layer makes predictions based on (Z𝑖𝑡 )𝐿 :

Ŷ𝑖𝑡 :𝑡+𝐹 = FCregression ((Z𝑖𝑡 )𝐿), (4)

where (Z𝑖𝑡 )𝐿 ∈ R4𝐷 , and Ŷ𝑖
𝑡 :𝑡+𝐹 ∈ R𝐹 is the prediction. We use

Mean Absolute Error (MAE) as our loss function:

L(Ŷ,Y) = 1

𝑁𝐹

𝑁∑
𝑖=1

𝐹∑
𝑗=1

|Ŷ𝑖𝑗 − Y𝑖𝑗 |. (5)

We optimize the parameters of all spatial and temporal identities

and fully connect layers by minimizing L via backpropagation and

gradient descent. We choose Adam [7] as our optimizer.

4 EXPERIMENTS
4.1 Experimental Setup
Datasets. Following previous works [5, 17, 18], we conduct exper-

iments on five commonly used multivariate time series datasets:

PEMS04, PEMS07, PEMS08, PEMS-BAY, and Electricity. The statisti-

cal information is summarized in Table 1. It is notable that PEMS04,

PEMS07, PEMS08, and PEMS-BAY datasets come with a pre-defined

graph to indicate the dependencies among time series. Due to space

limitations, we do not introduce each dataset in detail.

Baselines. We select a wealth of baselines that have official pub-

lic code, including the traditional methods (VAR [12], HI [4]) and the

typical deep learningmethods (LSTM [6], DCRNN [10], STGCN [20],

Graph WaveNet [18], AGCRN [1], StemGNN [2]), as well as the

very recent works (GMAN [22], MTGNN [17], ST-Norm [5]). Due

to space limitations, we do not introduce each method in detail.

Metrics. We evaluate the performances of all baselines by three

commonly used metrics in multivariate time series forecasting,

including Mean Absolute Error (MAE), Root Mean Squared Error

(RMSE), and Mean Absolute Percentage Error (MAPE).
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Figure 2: The overview of the proposed STID.

Implementation. The proposed model is implemented with Py-

torch 1.9.1 on an NVIDIA RTX 2080Ti GPU. The hidden dimen-

sion 𝐷 is set to 32. The number of MLP layers 𝐿 is set to 3. For

PEMS04, PEMS07, PEMS08, and PEMS-BAY datasets, we set the

length of historical data 𝑃 to 12. For the Electricity dataset, we

set 𝑃 = 168. For all datasets, we set the length of future data 𝐹

to 12. The learning rate is set to 0.001. The code is available at

https://github.com/zezhishao/STID.

4.2 Performance Study
For a fair comparison, we follow the dataset division in previous

works. The ratio of training, validation, and test sets for the PEMS-

BAY dataset is 7 : 1 : 2, while the ratio for other datasets is 6 : 2 : 2.We

aim to predict the future time series with a length of 12, i.e., 𝐹 = 12,

on all datasets. The results are shown in Table 3. We compared the

performance of these methods on the 3rd, 6th, and 12th time slots

as well as the performance of the average 12 time slots, which are

shown in the @3, @6, @12, and avg columns, respectively. The

best results are highlighted in bold, and the second-best results

are underlined. In addition, DCRNN, STGCN, Graph WaveNet (i.e.,
GWNet), and GMAN rely on a pre-defined graph. Therefore, since

there is no graph structure, the results of these methods in the

Electricity dataset are not available. As shown in the table, STID

consistently achieves the best performance in almost all horizons

in all datasets and does not require a pre-defined graph. These

remarkable results demonstrate the effectiveness of STID.

4.3 Efficiency Study
In this part, we compare the efficiency of STID with other learning

methods based on all datasets. For a more intuitive and effective

comparison, we compare the average training time required for

each epoch of these models. All models are trained on Intel(R)

Xeon(R) Gold 5217 CPU @ 3.00GHz, 128G RAM computing server,

equipped with NVIDIA RTX 2080Ti graphics cards.

The results are shown in Table 2. The computational complex-

ity of previous STGNN-based models usually increases linearly or

quadratically with the length of the input time series and the num-

ber of variables. Compared with other datasets, the PEMS07 dataset

has more variables (𝑁 = 883), and the Electricity dataset has longer

historical data (𝑃 = 168). Therefore, previous works spend more

time on the PEMS07 and Electricity datasets. Thanks to the concise

architecture without GCN and sequential models (e.g., RNN), STID
achieves consistent best efficiency on all datasets.

4.4 Ablation Study
In this part, we conduct ablation studies to verify the effectiveness

of spatial-temporal identity. We set three variants of our STID. STID

Table 2: Efficiency study.

Dataset PEMS04 PEMS07 PEMS08 PEMS-BAY Electricity

Methods Seconds/epoch

VAR 14.73 189.37 7.65 57.11 29.62

LSTM 7.78 25.73 4.56 28.34 22.26

DCRNN 95.12 510.53 57.17 351.35 N/A

STGCN 41.16 198.13 25.31 155.68 N/A

GWNet 27.88 170.61 29.72 111.95 N/A

AGCRN 28.49 189.50 19.29 102.09 144.17

StemGNN 16.29 136.31 9.41 63.791 56.24

GMAN 107.31 827.77 71.04 410.67 N/A

MTGNN 25.11 107.03 79.45 90.18 28.59

STNorm 18.20 74.12 32.45 64.36 155.86

STID 5.24 14.32 4.46 15.76 2.31

w/o E removes the spatial identity. STID w/o TTiD removes the TTiD

temporal identity, while STID w/o TDiW removes the TDiW temporal

identity. We conduct experiments on the PEMS04 dataset and report

the avg column on all metrics. The results are shown in Figure 3.

In summary, all these identities are beneficial. The most important

one is spatial identity, which means that spatial indistinguishability

acts as a major bottleneck of MTS forecasting. Furthermore, the

temporal identities TTiD and TDiW are also important since data in

the real world often contain daily and weekly periodicity.
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Figure 3: Ablation study on PEMS04 dataset.

4.5 Visualization
In order to further intuitively understand and evaluate our model, in

this section, we visualize the learned spatial and temporal identities.

Specifically, we visualize E ∈ R𝑁×𝐷
, TTiD ∈ R𝑁𝑑×𝐷

, and TDiW ∈
R𝑁𝑤×𝐷

of STID on PEMS08 datasets, where 𝑁 = 170, 𝑁𝑑 = 288,

and 𝑁𝑤 = 7. Here we utilize t-SNE [16] to visualize E and TTiD.
For TDiW ∈ R𝑁𝑤×𝐷

, where 𝑁𝑤 = 7 ≪ 𝐷 = 32, we train STID

by setting the embedding size of TDiW to 2 to get a more accurate

visualization. The results are shown in Figure 4.

4456

https://github.com/zezhishao/STID


CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Zezhi Shao et al.

Table 3: Multivariate time series forecasting on the PEMS04, PEMS07, PEMS08, PEMS-BAY, and Electricity datasets.
Dataset PEMS04 PEMS07 PEMS08 PEMS-BAY Electricity

Method Metric @3 @6 @12 Avg. @3 @6 @12 Avg. @3 @6 @12 Avg. @3 @6 @12 Avg. @3 @6 @12 Avg.

HI

MAE 42.33 42.35 42.37 42.36 49.02 49.03 49.06 49.04 34.55 34.57 34.59 34.57 3.06 3.06 3.05 3.06 92.44 92.58 92.79 92.58

RMSE 61.64 61.66 61.67 61.66 71.16 71.18 71.20 71.18 50.41 50.43 50.44 50.43 7.05 7.05 7.03 7.04 167.00 167.05 167.21 167.07

MAPE 29.90% 29.92% 29.96% 29.92% 22.73% 22.75% 22.79% 22.75% 21.60% 21.63% 21.68% 21.63% 6.85% 6.84% 6.83% 6.84% 70.16 70.46 70.91 70.43

VAR

MAE 21.94 23.72 26.76 23.51 32.02 35.18 38.37 37.06 19.52 22.25 26.17 22.07 1.74 2.32 2.93 2.21 27.69 28.19 29.34 28.29

RMSE 34.30 36.58 40.28 36.39 48.83 52.91 56.82 55.73 29.73 33.30 38.97 31.02 3.16 4.25 5.44 4.12 56.06 57.55 60.45 57.78

MAPE 16.42% 18.02% 20.94% 17.85% 18.30% 20.54% 22.04% 19.93% 12.54% 14.23% 17.32% 14.04% 3.60% 5.00% 6.50% 5.01% 75.53% 79.94% 86.62% 80.23%

LSTM

MAE 21.37 23.72 26.76 23.81 20.42 23.18 28.73 23.54 17.38 21.22 30.69 21.31 2.05 2.20 2.37 2.18 18.57 20.68 23.79 20.42

RMSE 33.31 36.58 40.28 36.62 33.21 37.54 45.63 38.20 26.27 31.97% 43.96 32.10 4.19 4.55 4.96 4.47 48.86 48.96 56.44 49.03

MAPE 15.21% 18.02% 20.94% 18.12% 8.79% 9.80% 12.23% 9.96% 12.63% 17.32% 25.72% 17.47% 4.80% 5.20% 5.70% 5.04% 32.88% 37.21% 39.42% 35.58%

DCRNN

MAE 18.53 19.65 21.67 19.71 19.45 21.18 24.14 21.20 14.16 15.24 17.70 15.26 1.31 1.67 1.99 1.62 N/A

RMSE 29.61 31.37 34.19 31.43 31.39 34.42 38.84 34.43 22.20 24.26 27.14 24.28 2.80 3.81 4.66 3.74 N/A

MAPE 12.71% 13.45% 15.03% 13.54% 8.29% 9.01% 10.42% 9.06% 9.31%% 9.90% 11.13% 9.96% 2.73% 3.75% 4.73% 3.61% N/A

STGCN

MAE 18.74 19.64 21.12 19.63 20.33 21.66 24.16 21.71 14.95 15.92 17.65 15.98 1.35 1.69 2.01 1.63 N/A

RMSE 29.84 31.34 33.53 31.32 32.73 35.35 39.48 35.41 23.48 25.36 28.03 25.37 2.88% 3.83 4.56 3.73 N/A

MAPE 14.42% 13.27% 14.22% 13.32% 8.68% 9.16% 10.26% 9.25% 9.87% 10.42% 11.34% 10.43% 2.88% 3.85% 4.74% 3.69% N/A

GWNet

MAE 18.00 18.96 20.53 18.97 18.69 20.26 22.79 20.25 13.72 14.67 16.15 14.67 1.30 1.63 1.95 1.58 N/A

RMSE 28.83 30.33 32.54 30.32 30.69 33.37 37.11 33.32 21.71 23.50 25.95 23.49 2.78 3.73 4.52 3.65 N/A

MAPE 13.64% 14.23% 15.41% 14.26% 8.02% 8.56% 9.73% 8.63% 8.80% 9.49% 10.74% 9.52% 2.71% 3.66% 4.63% 3.52% N/A

AGCRN

MAE 18.52 19.45 20.64 19.36 19.31 20.70 22.74 20.64 14.51 15.66 17.49 15.65 1.37 1.70 1.99 1.63 22.88 24.47 27.24 23.88

RMSE 29.79 31.45 33.31 31.28 31.68 34.52 37.94 34.39 22.87 25.00 27.93 24.99 2.93 3.89 4.64 3.78 49.98 54.17 59.76 53.02

MAPE 12.31% 12.82% 13.74% 12.81% 8.18% 8.66% 9.71% 8.74% 9.34% 10.34% 11.72% 10.17% 2.95% 3.88% 4.72% 3.73% 41.33% 48.93% 52.57% 45.83%

StemGNN

MAE 19.48 21.40 24.90 21.61 19.74 22.07 26.20 22.23 14.49 15.84 18.10 15.91 1.44 1.93 2.57 1.92 21.45 23.56 24.98 22.89

RMSE 30.74 33.46 38.29 33.80 32.32 36.16 42.32 36.46 23.02 25.38 28.77 25.44 3.12 4.38 5.88 4.46 41.09 46.95 51.97 46.21

MAPE 13.84% 15.85% 19.50% 16.10% 8.27% 9.20% 11.00% 9.20% 9.73% 10.78% 12.50 10.90% 3.08% 4.54% 6.55% 4.54% 57.12% 65.34% 62.81% 57.26%

GMAN

MAE 18.27 18.81 20.01 18.83 19.25 20.33 22.25 20.43 13.80 14.62 15.72 14.81 1.34 1.65 1.89 1.58 N/A

RMSE 29.35 30.85 31.32 30.93 31.20 33.30 36.40 33.30 22.88 24.12 26.47 24.19 2.92 3.81 4.38 3.75 N/A

MAPE 12.66% 13.25% 13.40% 13.21% 8.21% 8.63% 9.48% 8.69% 9.41% 9.57% 10.56% 9.69% 2.88% 3.71% 4.51% 3.69% N/A

MTGNN

MAE 18.65 19.48 20.96 19.50 19.23 20.83 23.60 20.94 14.30 15.25 16.80 15.31 1.34 1.67 1.97 1.60 16.78 18.43 20.49 18.18

RMSE 30.13 32.02 34.66 32.00 31.15 33.93 38.10 34.03 22.55 24.41 26.96 24.42 2.84 3.79 4.55 3.70 36.91 42.62 48.33 42.04

MAPE 13.32% 14.08% 14.96% 14.04% 8.55% 9.30% 10.10% 9.10% 10.56% 10.54% 10.90% 10.70% 2.80% 3.74% 4.57% 3.57% 48.16% 51.31% 56.25% 50.77%

STNorm

MAE 18.28 18.92 20.20 18.96 19.15 20.63 22.60 20.52 14.44 15.53 17.20 15.54 1.34 1.67 1.96 1.60 18.74 21.14 24.05 20.69

RMSE 29.70 31.12 32.91 30.98 31.70 35.10 38.65 34.85 22.68 25.07 27.86 25.01 2.88 3.83 4.52 3.71 40.86 48.24 55.27 47.55

MAPE 12.28% 12.71% 13.43 12.69% 8.26% 8.84% 9.60% 8.77% 9.32% 9.98% 11.30% 10.03% 2.82% 3.75% 4.62% 3.60% 32.66% 37.07% 42.63% 35.98%

STID

MAE 17.51 18.29 19.58 18.29 18.31 19.59 21.52 19.54 13.28 14.21 15.58 14.20 1.30 1.62 1.89 1.55 16.08 17.87 19.25 17.39
RMSE 28.48 29.86 31.79 29.82 30.39 32.90 36.29 32.85 21.66 23.57 25.89 23.49 2.81 3.72 4.40 3.62 34.49 41.65 45.77 40.80
MAPE 12.00% 12.46% 13.38% 12.49% 7.72% 8.30% 9.15% 8.25% 8.62% 9.24% 10.33% 9.28% 2.73% 3.68% 4.47% 3.51% 31.95% 37.80% 40.26% 35.53%

         (b) Temporal embeddings Ti
TiD      (a) Spatial embeddings Ei (c) Temporal embeddings Ti

DiW

Figure 4: Visualization of learned spatial and temporal identities.

First, Figure 4(a) demonstrates that the identities of different

variables (i.e., time series) are likely to cluster. This is in line with the

characteristics of the transportation system. For example, nearby

traffic sensors in the road network tend to share similar patterns.

Second, Figure 4(b) visualize the embeddings of 288 time slots

for each day. It is obvious that there is daily periodicity in the

PEMS08 dataset. Moreover, adjacent time slots tend to share similar

identities. Last, Figure 4(c) shows that the identities of weekdays

are similar, while the weekends’ are very different.

5 CONCLUSION
In this paper, we propose to explore the critical factors of MTS

forecasting to design a model that is as powerful as STGNNs but

more concise and effective. Specifically, we identify the indistin-

guishability of samples in both spatial and temporal dimensions as

a key bottleneck. Subsequently, we propose a simple yet effective

baseline for MTS forecasting by attaching spatial and temporal

identity information, i.e., STID. STID achieves better efficiency and

performance simultaneously based on simple networks. These re-

sults suggest that by solving the indistinguishability of samples, we

can design models more freely, without being limited to STGNNs.
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